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ABSTRACT  

In this communication of the paper depicted the 𝛼 − 𝐹𝑂𝑠 of a group and then explain the idea of   

𝛼 − 𝐹𝑆𝐺 and −𝐹𝑁𝑆𝐺 . More over , we generalized 𝛼 − 𝐹𝑂𝑠  relative to 𝛼 −cyclic group and investigate 

some characteristic of related algebraic results.     
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1. INTRODUCTION  

 Zadeh L A[9] explored the new idea of  fuzzy subsets of a nonempty set in 1965. Abou-Zaid S[1] 

,introduced the  characteristic fuzzy subgroups of a finite group in 1991. Rosenfeld A[8], explored the 

new concept of fuzzy groups in 1971. In 1984, Fuzzy Normal subgroups and fuzzy cosets derived from 

Mukherjee N P and Bhattacharya P[7]. Liu W J[5], described the new idea of fuzzy invariant subgroups 

and fuzzy ideals in 1982. In 1994, introduced the new notion of fuzzy orders relative to fuzzy subgroups 

by Jae-Gyeom Kim[6]. In 1981, produced the new concept of fuzzy groups and level subgroups in Das P 

S[4]. Asaad M[3], developed the new idea in groups and fuzzy subgroups in 1991. In 1988, Some properties 

of fuzzy groups in explored from the idea is Akgul M[2].  

In this research paper arranged as that, section 2 basic fundamental elementary definition and 

related the results which are through this research article. In section 3, we have define α −fuzzy orders 

with respect to the   α −fuzzy subgroups and α −fuzzy normal subgroups described the some algebraic 

characteristic results and section 4, we will be introduced the α −fuzzy orders with respect to the   α 
−fuzzy cyclic group and their some generalization results explained.  

  

2. PRELIMINARIES  

Definition: 2.1[9]  

  Let X be a non-empty set .  A 𝐹𝑆𝑏 of the set X is a mapping μ : X→ [0, 1]. Definition: 

2.2[8]  

  Let 𝐺 be a group. A 𝐹𝑆𝑏 𝜇 of 𝐺 is a 𝐹𝑆𝐺 of 𝐺 if   

(i) 𝜇(𝑥𝑦) ≥ 𝑚𝑖𝑛{𝜇(𝑥), 𝜇(𝑦)}  

(ii) 𝜇(𝑥−1) ≥ 𝜇(𝑥), for all 𝑥, 𝑦 ∈ 𝐺.  

(iii) From this definition, we clearly have 𝜇(𝑥−1) = 𝜇(𝑥), for all 𝑥, 𝑦 ∈ 𝐺.  
Definition: 2.3[6]  

  Let 𝐺 be a group. A 𝐹𝑆𝐺 𝜇 of 𝐺 is normal ( Invariant) in 𝐺 if 𝜇(𝑥𝑦) = 𝜇(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝐺.  
Theorem: 2.4[8]  

  Let 𝐺 be a group and let  𝜇 be a 𝐹𝑆𝐺 of 𝐺. Then  

(i) 𝜇(𝑥) ≤ 𝜇(𝑒), for all 𝑥, 𝑦 ∈ 𝐺.  

(ii) 𝑖𝑓𝜇(𝑥𝑦−1) = 𝜇(𝑒), then 𝜇(𝑥) = 𝜇(𝑦)  



                                        

Volume IX, Issue X, OCTOBER/2020 Page No : 42 

Theorem: 2.5 [7]  

Let 𝐺 be a group and let 𝜇 be a 𝐹𝑆𝐺 of 𝐺. Then 𝜇 is normal in 𝐺 if and only if 𝜇(𝑦−1𝑥𝑦) = 𝜇(𝑥), 
for all 𝑥, 𝑦 ∈ 𝐺.  

Theorem: 2.6 [4]  

 Let 𝐺 be a cyclic group of order 𝑝𝑛, where 𝑝 is a prime number. If 𝜇 is a 𝐹𝑆𝐺 of 𝐺, then for all 𝑥, 𝑦 ∈ 𝐺.  

(i) If 𝑂(𝑥) > 𝑂(𝑦), 𝑡ℎ𝑒𝑛 𝜇(𝑥) ≤ 𝜇(𝑦).  

(ii) If 𝑂(𝑥) = 𝑂(𝑦), then 𝜇(𝑥) = 𝜇(𝑦).  

Theorem: 2.7 [2]  

   Let 𝐺 be a finite group and let 𝜇 be a 𝐹𝑆𝐺 of 𝐺. Then   

(i) 𝜇(𝑥𝐾) ≥ 𝜇(𝑥) for any integer 𝐾 and for all 𝑥 ∈ 𝐺.  

(ii) If 𝑂(𝑥)/𝑂(𝑦), then 𝜇(𝑦) ≤ 𝜇(𝑥) for 𝑥, 𝑦 ∈ 〈𝑍〉, where 𝑧 ∈ 𝐺.  

(iii) If (𝑂(𝑥), 𝐾) = 1, then 𝜇(𝑥𝑘) = 𝜇(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑍 𝑎𝑛𝑑 𝑥 ∈ 𝐺.  

Theorem: 2.8  

     Let  𝐺 be a group. For 𝑥, 𝑦, 𝑧 ∈ 𝐺, we have  

(i) If 𝑥𝑚 = 𝑒, then 𝑂(𝑥)/𝑚, where 𝑚 ∈ 𝑍.  

(ii) 𝑂(𝑥𝑚) = 𝑂(𝑥)/(𝑂(𝑥), 𝑚), where 𝑚 ∈ 𝑍.  

(iii) If (𝑂(𝑥), 𝑂(𝑦)) = 1 and 𝑥𝑦 = 𝑦𝑥, then 𝑂(𝑥𝑦) = 𝑂(𝑥) × 𝑂(𝑦).  

(iv) If 𝑧 = 𝑦−1𝑥𝑦, then 𝑂(𝑧) = 𝑂(𝑥).  

(v) If 𝑂(𝑧) = 𝑚𝑛 with (𝑚, 𝑛) = 1, then 𝑧 = 𝑥𝑦 = 𝑦𝑥 for some 𝑥, 𝑦 ∈ 𝐺 with 𝑂(𝑥) = 𝑚 and 

𝑂(𝑦) = 𝑛. Further, such an expression for 𝑧 is unique.  

Definition: 2.9 [6]  

  Let 𝜇 be a 𝐹𝑆𝐺  of a group 𝐺. For a given 𝑥 ∈ 𝐺, the least positive integer 𝑛 such that 𝜇(𝑥𝑛) = 𝜇(𝑒) is 

the 𝐹𝑂 of 𝑥 with respect to 𝜇 [briefly, 𝐹𝑂𝜇(𝑥)]. If no such 𝑛 exists, 𝑥 is of infinite 𝐹𝑂 with respect to 𝜇.  

3. SOME CHARACTERISTIC OF  𝜶 − 𝑭𝑶𝒔 RELATIVE TO 𝜶 − 

𝑭𝑺𝑮  

Definition: 3.1  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺. For a given 𝜃 ∈ 𝐺, the least positive integer 𝑛 such that  

𝐴𝛼(𝜃𝑛) = 𝐴𝛼(𝑒) is the 𝛼 − 𝐹𝑂 of 𝜃 with respect to 𝐴𝛼 [briefly, 𝐹𝑂𝐴𝛼(𝜃)]. If no such 𝑛 exists, 𝜃 is of 

infinite 𝛼 − 𝐹𝑂 with respect to 𝐴𝛼.  

   ∴ 𝑂(𝜃) and 𝑂(𝜑) does not imply that of 𝐹𝑂𝐴𝛼(𝜃) and 𝐹𝑂𝐴𝛼(𝜑),   

Example: 3.1.1  

  Let 𝐺 = {𝑎, 𝑏/𝑎2 = 𝑏2 = (𝑎𝑏)2 = 𝑒} be the Klein four-group. Define a 𝛼 − 𝐹𝑆𝐺  𝐴𝛼 of 𝐺 by 𝐴𝛼(𝑒) = 
𝐴𝛼(𝑎𝑏) = 𝑡𝑜 and 𝐴𝛼(𝑎) = 𝐴𝛼(𝑏) = 𝑡1, where  𝑡𝑜 > 𝑡1. Clearly, 𝑂(𝑎) = 𝑂(𝑎𝑏) = 2, but   

𝐹𝑂𝐴𝛼(𝑎) = 2 and 𝐹𝑂𝐴𝛼(𝑎𝑏) = 1.  

Proposition: 3.2  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺. For 𝜃 ∈ 𝐺, if 𝐴𝛼(𝜃𝑚) = 𝐴𝛼(𝑒) for some integer 𝑚, then  

𝐹𝑂𝐴𝛼(𝜃)/𝑚. Proof:  

 Let 𝐹𝑂  integers  𝑎𝑛𝑑 𝑡  𝑡, where . Then, 𝐴𝛼

)   

 𝑚𝑖𝑛  𝑚𝑖𝑛 .  

Hence 𝑡 , by the choice of 𝑛. If  is finite then 𝐹𝑂𝐴𝛼  is clearly finite for all 𝛼  𝐹𝑆𝐺  𝐴𝛼 of 𝐺. 

If 𝑂  is infinite, then for each positive integer 𝑛,  a  𝐹𝑆𝐺  𝐴𝛼𝑛 of 𝐺  𝐹𝑂𝐴𝛼𝑛  𝑛 as follows.                   
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Example: 3.2.1  

   Let 𝜃 be an element of infinite order in the group 𝐺. For each positive integer 𝑛, define the  

 

𝛼 − 𝐹𝑆𝐺  𝐴𝛼𝑛 of 𝐺 by 𝐴𝛼𝑛  {𝑡𝑡𝑜 𝑖𝑓 𝜑𝑒𝑟𝑤𝑖𝑠𝑒〈𝜃𝑛〉,,  

 
Where 𝑡𝑜 > 𝑡1. Clearly, 𝐹𝑂𝐴𝛼𝑛 .                

Corollary: 3.2.2  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺   of a group 𝐺. Then 𝐹𝑂𝐴𝛼(𝜃)/ 𝑂(𝜃) for all 𝜃 .  
Proposition: 3.3  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺  of a group 𝐺, and let 𝜃 and 𝜑 be elements of 𝐺  

 (𝐹𝑂𝐴𝛼(𝜃), 𝐹𝑂𝐴𝛼(𝜑)) = 1 and 𝜃𝜑 = 𝜑𝜃. If 𝐴𝛼(𝜃𝜑) = 𝐴𝛼(𝑒), then 𝐴𝛼(𝜃) = 𝐴𝛼(𝜑) = 𝐴𝛼(𝑒). Proof:  

   Let 𝐹𝑂𝐴𝛼(𝜃) = 𝑛 and 𝐹𝑂𝐴𝛼(𝜑) = 𝑚. Then 𝐴𝛼 (𝜃𝑚𝜑𝑚).  

Thus 𝐴𝛼(𝜃𝑚) = 𝐴𝛼(𝜑𝑚)=𝐴𝛼(𝑒). Therefore, 𝑛/𝑚, by pro.. (3.2).   

But (𝑛, 𝑚) = 1. Thus 𝑛 = 1, i.e., 𝐴𝛼(𝜃) = 𝐴𝛼(𝑒).   

Hence 𝐴𝛼(𝜑) = 𝐴𝛼(𝜃) = 𝐴𝛼(𝑒).                                                

Within the proposition, although 𝐴𝛼 is normal, the belief 𝜃𝜑 = 𝜑𝜃 may not be omitted . Corollary: 

3.3.1  

   Let 𝐴𝛼 be a 𝛼  𝐹𝑆𝐺 of a group 𝐺, and let 𝜃 and 𝜑 be elements of 𝐺 such that  

(𝑂(𝜃), 𝑂(𝜑)) = 1 and 𝜃𝜑 . If 𝐴𝛼 , then 𝐴𝛼  (y)= .  

   Neither the assumption (𝐹𝑂𝐴𝛼 , 𝐹𝑂𝐴𝛼  in pro…(3.3) nor the assumption  

(𝑂(𝜃), 𝑂(𝜑)) = 1 in corollary 3.3.1 can be omitted. In fact, in example 3.1.1  

𝐴𝛼(𝑒), but 𝐹𝑂𝐴𝛼(𝑎)=𝐹𝑂𝐴𝛼(𝑏) = 𝑂(𝑎) = 𝑂(𝑏) = 2.                        

Theorem: 3.4  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺. Let 𝐹𝑂𝐴𝛼(𝜃) = 𝑛, where 𝜃 . If 𝑚 is an integer with  

𝑑 = (𝑚, 𝑛), then 𝐹𝑂𝐴𝛼(𝜃𝑚) = 𝑛/𝑑. Proof:  

   Let 𝐹𝑂𝐴𝛼 . First we have  
𝑛 

𝐴𝛼   for some integer 𝑘  

     .  

Thus 𝑡/𝑛/𝑑 by pro..(3.2). Because 𝑑  integer 𝑖 and 𝑗   .   

We the have   

𝐴𝛼 (𝜃𝑛𝑡𝑖𝜃𝑚𝑡𝑗)  

 𝑚𝑖𝑛   

 𝑚𝑖𝑛   

 𝑚𝑖𝑛 .  

This implies that 𝑛/𝑡𝑑 i.e., 𝑛/𝑑/𝑡. Consequently , 𝑡  𝑛/𝑑.              

Proposition: 3.5  

  Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 𝐺. Let 𝐹𝑂𝐴𝛼(𝜃) = 𝑛, where 𝜃 . If 𝑚 is an integer with (𝑛, 𝑚) = 1, then 𝐴𝛼(𝜃𝑚) 
= 𝐴𝛼(𝜃).  

Proof:  

   Because   integers 𝑠 and 𝑡  .  

We then have  

   𝐴𝛼   

 𝑚𝑖𝑛   

 𝑚𝑖𝑛   

 𝑚𝑖𝑛   

     .                    

Theorem: 3.6  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺. Let 𝐹𝑂𝐴𝛼(𝜃) = 𝑛, where 𝜃  If (𝑚𝑜𝑑 𝑛), where  

𝑖, 𝑗  𝑍, then 𝐹𝑂𝐴𝛼(𝜃𝑖) = 𝐹𝑂𝐴𝛼(𝜃𝑗). Proof:  

   Let 𝐹𝑂𝐴𝛼(𝜃𝑖) = 𝑡 and 𝐹𝑂𝐴𝛼(𝜃𝑗) = 𝑠. By the assumption, 𝑖 = 𝑗 + 𝑛𝑘 for some integer 𝐾.   

 Now, 𝐴𝛼((𝜃𝑖)𝑠) = 𝐴𝛼((𝜃𝑗+𝑛𝑘)𝑠) = 𝐴𝛼 ((𝜃𝑗)𝑠(𝜃𝑛)𝑘𝑠))  
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≥ 𝑚𝑖𝑛{𝐴𝛼(𝜃𝑗)𝑠), 𝐴𝛼(𝜃𝑛)𝑘𝑠)}  

≥ 𝑚𝑖𝑛{𝐴𝛼(𝑒), 𝐴𝛼(𝜃𝑛)}  

= 𝑚𝑖𝑛{𝐴𝛼(𝑒), 𝐴𝛼(𝑒)},  

And so 𝑡/𝑠. Similarly, 𝑠/𝑡. Thus we have 𝑡 = 𝑠.            ∎  

Theorem: 3.7  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺, and let 𝜃 and 𝜑 be elements of 𝐺 ∶ 𝜃𝜑 = 𝜑𝜃 and  

(𝐹𝑂𝐴𝛼(𝜃), 𝐹𝑂𝐴𝛼(𝜑)) = 1. Then 𝐹𝑂𝐴𝛼(𝜃𝜑) = 𝐹𝑂𝐴𝛼(𝜃) × 𝐹𝑂𝐴𝛼(𝜑). Proof:  

   Let 𝐹𝑂𝐴𝛼(𝜃𝜑) = 𝑛, 𝐹𝑂𝐴𝛼(𝜃) = 𝑠 and 𝐹𝑂𝐴𝛼(𝜑) = 𝑡.  

Then 𝐴𝛼((𝜃𝜑)𝑠𝑡) = 𝐴𝛼(𝜃𝑠𝑡𝜑𝑠𝑡)  

≥ 𝑚𝑖𝑛{𝐴𝛼((𝜃𝑠)𝑡), 𝐴𝛼((𝜑𝑡)𝑠)}  

≥ 𝑚𝑖𝑛{𝐴𝛼(𝜃𝑠), 𝐴𝛼(𝜑𝑡)} = 

𝑚𝑖𝑛{𝐴𝛼(𝑒), 𝐴𝛼(𝑒)} = 𝐴𝛼(𝑒). Thus 𝑛/𝑠𝑡 ,Now 𝐴𝛼(𝑒) = 𝐴𝛼((𝜃𝜑)𝑛) = 

𝐴𝛼(𝜃𝑛𝜑𝑛). Besides, (𝐹𝑂𝐴𝛼(𝜃𝑛), 𝐹𝑂𝐴𝛼(𝜑𝑛)) = 1 .  

∴ 𝐴𝛼(𝜃𝑛) = 𝐴𝛼(𝜑𝑛) = 𝐴𝛼(𝑒) both 𝑠 and 𝑡 divide 𝑛 .  

∴ 𝑠𝑡/𝑛, because (𝑠, 𝑡) = 1      ⇒𝑛 = 𝑠𝑡.                    ∎      

Corollary: 3.7.1  

  Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺, and let 𝜃 and 𝜑 be elements of 𝐺 ∶ 𝜃𝜑 = 𝜑𝜃 and (𝑂(𝜃), 𝑂(𝜑)) = 1. 
Then 𝐹𝑂𝐴𝛼(𝜃𝜑) = 𝐹𝑂𝐴𝛼(𝜃) × 𝐹𝑂𝐴𝛼(𝜑).  

∵ supposing 𝐴𝛼 is normal subgroup, the assumption 𝜃𝜑 = 𝜑𝜃 may not be omitted.  

Example: 3.7.2  

   Define a 𝛼 − 𝐹𝑁𝑆𝐺  𝐴𝛼 of the symmetric group 𝑆4   

𝐴𝛼(𝜃) = { 𝑡𝑜 𝑖𝑓 𝜃 = 𝑒,  

𝑡1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

Where 𝑡𝑜 > 𝑡1. Now, let 𝜃 = (1  2) and 𝜑 = (2  3  4). Then  𝐹𝑂𝐴𝛼(𝜃) = 2, 𝐹𝑂𝐴𝛼(𝜑) = 3,  

𝐹𝑂𝐴𝛼(𝜃𝜑) = 𝐹𝑂𝐴𝛼(𝜑𝜃) = 4, and 𝜃𝜑 ≠ 𝜑𝜃.                                                                              ∎  

Theorem: 3.8  

  Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a group 𝐺. For 𝑧 ∈ 𝐺, if 𝐹𝑂𝐴𝛼(𝑧) = 𝑛𝑚 with (𝑛, 𝑚) = 1, then ∃ 𝜃 and 𝜑 in 𝐺 ∶ 𝑧 
= 𝜃𝜑 = 𝜑𝜃, 𝐹𝑂𝐴𝛼(𝜃) = 𝑚 and 𝐹𝑂𝐴𝛼(𝜑) = 𝑛. Furthermore explain  for 𝑧 is unique in the sense of 𝛼 
−fuzzy grades, i.e., if (𝜃, 𝜑) and (𝜃1, 𝜑1) are such pairs, then 𝐴𝛼(𝜃) = 𝐴𝛼(𝜃1) and  

𝐴𝛼(𝜑) = 𝐴𝛼(𝜑1). Proof  

   Because  (𝑚, 𝑛) = 1, ∃ integers 𝑠 and 𝑡 ∶ 𝑚𝑠 + 𝑛𝑡 = 1.  

Here (𝑚, 𝑡) = (𝑛, 𝑠) = 1. Let 𝜃 = 𝑧𝑛𝑡 and 𝜑 = 𝑧𝑚𝑠. Then 𝑍 = 𝜃𝜑 = 𝜑𝜃, and by theorem 3.4,  

𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝑍𝑛𝑡) = 𝑚 and 𝐹𝑂𝐴𝛼(𝜑) = 𝐹𝑂𝐴𝛼(𝑍𝑚𝑠) = 𝑛. This proves the existence of 𝜃 and 𝜑. Let 

(𝜃, 𝜑) and (𝜃1, 𝜑1) be pairs satisfied.   since 𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝜃1) = 𝑚 and 𝐹𝑂𝐴𝛼(𝜑) = 𝐹𝑂𝐴𝛼(𝜑1) = 

𝑛,    ⇒𝐴𝛼(𝜃) = 𝐴𝛼(𝜃1−𝑚𝑠) = 𝐴𝛼(𝜃𝑛𝑡) = 𝐴𝛼(𝜃𝑛𝑡𝜑𝑛𝑡) = 𝐴𝛼((𝜃𝜑)𝑛𝑡)  

         = 𝐴𝛼((𝜃1𝜑1)𝑛𝑡) = 𝐴𝛼(𝜃1𝑛𝑡𝜑1𝑛𝑡)=𝐴𝛼(𝜃1𝑛𝑡)  

= 𝐴𝛼(𝜃11−𝑚𝑠) = 𝐴𝛼(𝜃1).  

Similarly, 𝐴𝛼(𝜑) = 𝐴𝛼(𝜑1).  

This proves the uniqueness of (𝜃, 𝜑).              ∎  

Theorem: 3.9  

    Let 𝐴𝛼 be a 𝛼 − 𝐹𝑁𝑆𝐺 of a group 𝐺. Then 𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝜑−1𝜃𝜑) for all 𝜃, 𝜑 ∈ 𝐺. Proof:  

   Let 𝜃, 𝜑 ∈ 𝐺, then we have 𝐴𝛼(𝜃𝑛) = 𝐴𝛼(𝜑−1𝜃𝑛𝜑) = 𝐴𝛼((𝜑−1𝜃𝜑)𝑛) for all 𝑛 ∈ 𝑍.  

Thus 𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝜑−1𝜃𝜑).                ∎  

∴ 𝐴𝛼 is not normal in 𝐺.  
Example: 3.9.1  

   Let 𝐷3={𝑎, 𝑏/𝑎3 = 𝑏3 = 𝑒, 𝑏𝑎 = 𝑎2𝑏} be the group with 6 elements. Define a  𝛼 − 𝐹𝑆𝐺 𝐴𝛼 of  

𝐷3 by  

𝐴𝛼(𝜃) = { 𝑡𝑜 𝑖𝑓 𝜃 ∈ 〈𝑏〉,  

𝑡1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Where 𝑡𝑜 > 𝑡1.  Then 𝑎−1𝑏𝑎 ∉ 〈𝑏〉, and so 𝐹𝑂𝐴𝛼(𝑏) = 1 ≠ 𝐹𝑂𝐴𝛼(𝑎−1𝑏𝑎).                                ∎  
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4. ALGEBRAIC PROPERTIES OF  𝜶 − 𝑭𝑶𝒔 IN A CYCLIC 

GROUP  

Lemma: 4.1  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a cyclic group 𝐺 and let 𝑎 and 𝑏 be any two generators of 𝐺. Then  

𝐹𝑂𝐴𝛼(𝑎) = 𝐹𝑂𝐴𝛼(𝑏). Proof  

   We have apply for Theroem..(3.4).  

Theorem: 4.2  

   Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺  of a cyclic group 𝐺 of finite order 𝑛. Then, ∀  𝜃, 𝜑 ∈ 𝐺;  

(i) If 𝑂(𝜃) = 𝑂(𝜑), then 𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝜑). (ii) If 

𝑂(𝜃)/𝑂(𝜑), then 𝐹𝑂𝐴𝛼(𝜃)/𝐹𝑂𝐴𝛼(𝜑).  

 (iii)  If 𝑂(𝜃) > 𝑂(𝜑), then 𝐹𝑂𝐴𝛼(𝜃) ≥ 𝐹𝑂𝐴𝛼(𝜑).  

Proof  

   Let 𝐺 = 〈𝑎〉. Let 𝜃 = 𝑎𝑠, 𝜑 = 𝑎𝑡, and 𝐹𝑂𝐴𝛼(𝑎) = 𝑚.  

𝑚 is  a specific generator 𝑎 of 𝐺.  

 Then 𝑂(𝜃) = 𝑛/(𝑠, 𝑛), 𝐹𝑂𝐴𝛼(𝜃) = 𝑚/(𝑠, 𝑚), 𝐹𝑂𝐴𝛼(𝜑) = 𝑚/(𝑡, 𝑚) and 𝑚/𝑛,  (i) 

Follows from (ii).  

(ii) If 𝑂(𝜃)/𝑂(𝜑), then (𝑡, 𝑛)/(𝑠, 𝑛), and so (𝑡, 𝑚)/(𝑠, 𝑚), because 𝑚/𝑛. Thus 𝐹𝑂𝐴𝛼(𝜃)/ 

𝐹𝑂𝐴𝛼(𝜑).  

(iii) If 𝑂(𝜃) > 𝑂(𝜑), the (𝑠, 𝑛) < (𝑡, 𝑛), and so (𝑠, 𝑚) ≤ (𝑡, 𝑚), because 𝑚/𝑛. Thus  

 𝐹𝑂𝐴𝛼(𝜃) ≥ 𝐹𝑂𝐴𝛼(𝜑).                  ∎  

Theorem: 4.3  

     Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a cyclic group 𝐺 of finite order. Then , ∀ 𝜃, 𝜑 ∈ 𝐺:  

(i) If 𝐹𝑂𝐴𝛼(𝜃) = 𝐹𝑂𝐴𝛼(𝜑), then 𝐴𝛼(𝜃) = 𝐴𝛼(𝜑).  

(ii) If 𝐹𝑂𝐴𝛼(𝜃)/𝐹𝑂𝐴𝛼(𝜑), then 𝐴𝛼(𝜃) ≥ 𝐴𝛼(𝜑). Proof  

     Let 𝐺 = 〈𝑎〉. Let 𝜃 = 𝑎𝑠, 𝜑 = 𝑎𝑡, and 𝐹𝑂𝐴𝛼(𝑎) = 𝑚.  

𝑚 is  a specific generator 𝑎 of 𝐺.  

Then 𝐹𝑂𝐴𝛼(𝜃) = 𝑚/(𝑠, 𝑚) and 𝐹𝑂𝐴𝛼(𝜑) = 𝑚/(𝑡, 𝑚),   

Let 𝑠 = ℎ(𝑠, 𝑚), 𝑡 = 𝑖(𝑡, 𝑚) and 𝑚 = 𝑗(𝑡, 𝑚) = 𝑘(𝑠, 𝑚) for some ℎ, 𝑖, 𝑗, 𝑘 ∈ 𝑍.  

If 𝐹𝑂𝐴𝛼(𝜃)/𝐹𝑂𝐴𝛼(𝜑), then (𝑡, 𝑚)/(𝑠, 𝑚). So 𝑡/𝑠𝑖 = ℎ(𝑠, 𝑚)𝑖 and 𝑚/𝑠𝑗 = ℎ(𝑠, 𝑚)𝑗,  

⇒ 𝐴𝛼(𝜃) = 𝐴𝛼(𝑎𝑠)  

     = 𝐴𝛼(𝑎𝑠(𝑖𝑣+𝑗𝑤)) for some 𝑢, 𝑤 ∈ 𝑍, since (𝑖, 𝑗) = 1  

= 𝐴𝛼(𝑎𝑠𝑖𝑣𝑎𝑠𝑗𝑤) ≥ 𝑚𝑖𝑛{𝐴𝛼(𝑎𝑠𝑖𝑣), 𝐴𝛼(𝑎𝑠𝑗𝑤)}  

 ≥ 𝑚𝑖𝑛{𝐴𝛼(𝑎𝑡), 𝐴𝛼(𝑎𝑚)} = 𝑚𝑖𝑛{𝐴𝛼(𝜑), 𝐴𝛼(𝑒)} = 𝐴𝛼(𝜑).                         ∎  

Corollary: 4.3.1  

     Let 𝐴𝛼 be a 𝛼 − 𝐹𝑆𝐺 of a cyclic group 𝐺 of finite order. Then, ∀ 𝜃, 𝜑 ∈ 𝐺:  

(i) If 𝑂(𝜃) = 𝑂(𝜑), 𝑡ℎ𝑒𝑛 𝐴𝛼(𝜃) = 𝐴𝛼(𝜑).  

(ii) If 𝑂(𝜃)/𝑂(𝜑), 𝑡ℎ𝑒𝑛 𝐴𝛼(𝜃) ≥ 𝐴𝛼(𝜑).                            ∎  
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