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ABSTRACT. We introduce and study a new class of the set binary g⋆p-closed sets

and some characterize the relations between them and the related properties are

investigate with suitable examples in main aim of this paper.

1. Introduction and Preliminaries

In 1970 Levine [5] gives the concept and properties of generalized closed (briefly

g-closed) sets and the complement of g-closed set is said to be g-open set. Njasted

[14] introduced and studied the concept of α-sets. Later these sets are called as α-

open sets in 1983. Mashhours et.al [8] introduced and studied the concept of α-closed

sets, α-closure of set, α-continuous functions, α-open functions and α-closed functions
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in topological spaces. Maki et.al [6, 7] introduced and studied generalized α-closed

sets and α-generalized closed sets. In 2011, S.Nithyanantha Jothi and P.Thangavelu

[9] introduced topology between two sets and also studied some of their properties.

Topology between two sets is the binary structure from X to Y which is defined to be

the ordered pairs (A, B) where A ⊆ X and B ⊆ Y . In this paper, We introduce and

study a new class of the set binary g⋆p-closed sets and some characterize the relations

between them and the related properties are investigate with suitable examples.

Throughout this paper, (X, Y ) denote binary topological spaces (X, Y,M).

Let X and Y be any two nonempty sets. A binary topology [9] from X to Y is a

binary structureM⊆ P(X)× P(Y ) that satisfies the axioms namely

(1) (φ,φ) and (X, Y ) ∈M,

(2) (A1 ∩ A2, B1 ∩ B2) ∈ M whenever (A1, B1) ∈ M and (A2, B2) ∈ M, and

(3) If {(Aα, Bα) : α ∈ δ} is a family of members ofM, then (
S

α∈δ Aα,
S

α∈δ Bα)∈
M.

IfM is a binary topology from X to Y then the triplet (X, Y,M) is called a binary

topological space and the members ofM are called the binary open subsets of the

binary topological space (X, Y,M). The elements of X × Y are called the binary

points of the binary topological space (X, Y,M). If Y = X thenM is called a binary

topology on X in which case we write (X,M) as a binary topological space.

Definition 1.1. [9] Let X and Y be any two nonempty sets and let (A, B) and

(C, D)∈ P(X)× P(Y ). We say that (A, B)⊆ (C, D) if A ⊆ C and B ⊆ D.

Definition 1.2. [9] Let (X, Y,M) be a binary topological space and A⊆ X, B⊆ Y .

Then (A, B) is called binary closed in (X, Y,M) if (X\A, Y \B) ∈ M.
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Proposition 1.3. [9] Let (X, Y,M) be a binary topological space and (A, B) ⊆
(X, Y ).

Let (A, B)1∗ = ∩{Aα : (Aα, Bα) is binary closed and (A, B) ⊆ (Aα, Bα)} and

(A, B)2∗ = ∩{Bα : (Aα, Bα) is binary closed and (A, B) ⊆ (Aα, Bα)}. Then ((A, B)1∗, (A, B)2∗)

is binary closed and (A, B) ⊆ ((A, B)1∗, (A, B)2∗).

Proposition 1.4. [9] Let (X, Y,M) be a binary topological space and (A, B) ⊆
(X, Y ). Let (A, B)1∗ = ∪{Aα : (Aα, Bα) is binary open and (Aα, Bα) ⊆ (A, B)}
and (A, B)2∗ =∪{Bα : (Aα, Bα) is binary open and (Aα, Bα)⊆ (A, B)}.

Definition 1.5. [9] The ordered pair ((A, B)1∗, (A, B)2∗) is called the binary closure

of (A, B), denoted by b-cl(A, B) in the binary space (X, Y,M) where (A, B) ⊆ (X, Y ).

Definition 1.6. [9] The ordered pair ((A, B)1∗, (A, B)2∗) defined in proposition 1.4 is

called the binary interior of of (A, B), denoted by b-int(A, B). Here ((A, B)1∗, (A, B)2∗)

is binary open and ((A, B)1∗, (A, B)2∗)⊆ (A, B).

Definition 1.7. [9] Let (X, Y,M) be a binary topological space and let (x, y) ⊆
(X, Y ). The binary open set (A, B) is said to be a binary neighbourhood of (x, y) if

x∈ A and y∈ B.

Proposition 1.8. [9] Let (A, B) ⊆ (C, D) ⊆ (X, Y ) and (X, Y, M) be a binary

topological space. Then, the following statements hold:

(1) b-int(A, B) ⊆ (A, B).

(2) If (A, B) is binary open, then b-int(A, B) = (A, B).

(3) b-int(A, B) ⊆ b-int(C, D).

(4) b-int(b-int(A, B)) = b-int(A, B).

(5) (A, B)⊆ b-cl(A, B).
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(6) If (A, B) is binary closed, then b-cl(A, B) = (A, B).

(7) b-cl(A, B) ⊆ b-cl(C, D).

(8) b-cl(b-cl(A, B)) = b-cl(A, B).

Definition 1.9. A subset (A, B) of a binary topological space (X, Y,M) is called

(1) a binary semi open set [13] if (A, B)⊆ b-cl(b-int(A, B)).

(2) a binary pre open set [3] if (A, B)⊆ b-int(b-cl(A, B)),

(3) a binary regular open set [12] if (A, B) = b-int(b-cl(A,B)).

Definition 1.10. A subset (A, B) of a binary topological space (X, Y,M) is called

(1) a binary g-closed set [10] if b-cl(A, B) ⊆ (U, V ) whenever (A, B) ⊆ (U, V ) and

(U, V ) is binary open.

(2) a binary gp-closed set [4] if b-pcl(A, B) ⊆ (U, V ) whenever (A, B) ⊆ (U, V )

and (U, V ) is binary open.

Definition 1.11. [2] Let (A, B) be a subset of a binary topological space (X, Y ). Then

(A, B) is called a binary g⋆-closed set if b-cl(A, B) ⊆ (P, Q) whenever (A, B) ⊆ (P, Q)

and (P, Q) is binary g-open in (X, Y ).

2. Binary g⋆p-closed sets

Definition 2.1. Let (X, Y,M) be a binary topological space. A subset (A, B) of

(X, Y,M) is called binary generalized star pre closed set (briefly binary g⋆p-closed)

if bp-cl(A, B)⊆ (U, V ) where (A, B)⊆ (U, V ) and (U, V ) is binary g-open.

Theorem 2.2. If (A, B) is binary closed set in (X, Y, M), then it is a binary g⋆p-

closed set but not the converse.

Proof. Let (A, B) be a binary closed set of (X, Y ) and (A, B) ⊆ (U, V ) where (U, V )

is binary g-open in (X, Y ). Since (A, B) is binary closed, we have b-cl(A, B) =
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(A, B) ⊆ (U, V ). That is b-cl(A, B) ⊆ (U, V ). Also bp-cl(A, B) ⊆ b-cl(A, B) implies

bp-cl(A, B)⊆ (U, V ), where (U, V ) is binary g-open in (X, Y ). Therefore (A, B) is a

binary g⋆p-closed set.

Example 2.3. Let X = {a, b}, Y = {1,2} and M = {(φ,φ), (φ, {1}), ({a}, {1}),
(X, Y )}. Then the set ({a}, {2}) is binary g⋆p-closed but not binary closed set.

Theorem 2.4. If (A, B) is binary g-closed in (X, Y,M), then it is binary g⋆p-closed

set but not the converse.

Proof. Let (A, B) be a binary g-closed set. Then b-cl(A, B) ⊆ (U, V ) whenever

(A, B) ⊆ (U, V ) and (U, V ) is binary open in (X, Y ), since every binary open set is

binary g-open set. So (U, V ) is binary g-open set in (X, Y ). We have bp-cl(A, B) ⊆ b-

cl(A, B) which implies bp-cl(A, B) ⊆ (U, V ), (A, B) ⊆ (U, V ), (U, V ) is binary g-open

in (X, Y ). Hence (A, B) is binary g⋆p-closed set.

Example 2.5. Let X = {a, b}, Y = {1,2} and M = {(φ,φ), (φ, {1}), ({a}, {1}),
({b}, {1}), (X, {1}), (X, Y )}. Then the set ({b}, φ) is binary g⋆p-closed but not a

binary g-closed set.

Theorem 2.6. If (A, B) is binary g⋆-closed in (X, Y,M), then it is binary g⋆p-closed

set but the converse is not true.

Proof. Let (A, B) be a binary g⋆-closed set of (X, Y ) and (A, B) ⊆ (U, V ), where

(U, V ) is binary g-open in (X, Y ). Since (A, B) is binary g⋆-closed we have b-

cl(A, B) = (A, B). So (A, B) ⊆ (U, V ) implies b-cl(A, B) ⊆ (X, Y ). But bp-

cl(A, B) ⊆ b-cl(A, B) implies bp-cl(A, B) ⊆ (U, V ), (A, B) ⊆ (U, V ), (U, V ) is binary

g-open in (X, Y ). Therefore (A, B) is binary g⋆p-closed set.
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Example 2.7. In Example 2.5, the set (X, φ) is binary g⋆p-closed set but not a binary

g⋆-closed set.

Theorem 2.8. If (A, B) is binary gp-closed in (X, Y,M), then it is binary g⋆p-closed

set.

Proof. Let (A, B) be a binary gp-closed set of (X, Y ) and (A, B) ⊆ (U, V ), where

(U, V ) is binary open in (X, Y ). But every binary open sets is binary g-open set. This

implies (U, V ) is binary g-open in (X, Y ). So bp-cl(A, B) ⊆ (U, V ), (A, B) ⊆ (U, V ),

(U, V ) is binary g-open in (X, Y ). Therefore (A, B) is binary g⋆p-closed set.

Theorem 2.9. The union of two binary g⋆p-closed sets in (X, Y,M) is also a binary

g⋆p-closed set in (X, T,M).

Proof. Let (A, B) and (C, D) be two binary g⋆p-closed sets in (X, Y,M). Let (U, V )

be a binary g-open set in (X, Y ), such that (A, B) ⊆ (U, V ) and (C, D) ⊆ (U, V ).

Then we have ((A, B) ∪ (C, D)) ⊆ (U, V ). Since (A, B) and (C, D) are binary g⋆p-

closed in (X, Y,M). This implies bp-cl(A, B) ⊆ (U, V ) and bp-cl(C, D) ⊆ (U, V ).

Now bp-cl((A, B)∪ (C, D)) = bp-cl(A, B)∪ bp-cl(C, D) ⊆ (U, V ). Thus we have bp-

cl((A, B)∪ (C, D)) ⊆ (U, V ), whenever ((A, B) ∪ (C, D)) ⊆ (U, V ), where (U, V ) is

binary g-open set in (X, Y,M). This implies (A, B) ∪ (C, D) is a binary g⋆p-closed

set in (X, Y,M).

Remark 2.10. The intersection of two binary g⋆p-closed sets in (X, Y, M) is also a

binary g⋆p-closed set in (X, Y,M) as seen from the following example.

Example 2.11. Let X = {a, b}, Y = {1,2} and M = {(φ,φ), (φ, {1}), (φ, {2}),
(φ, Y ), ({a}, {1}), ({a}, Y ), ({b}, {2}), ({b}, Y ), (X, Y )}. Then the binary g⋆p-closed

sets are {(φ,φ), ({a}, φ), ({a}, {1}), ({b}, φ), ({b}, {2}), (X,φ), (X, {1}), (X, {2}),
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(X, Y )}. Let A = ({a}, {1}) and B = (X,φ) are binary g⋆p-closed sets. Then

A∩ B = ({a}, {1})∩ (X, φ) = ({a}, φ) is also binary g⋆p-closed set.

Theorem 2.12. Let (A, B) be a binary g⋆p-closed subset of (X, Y,M). If (A, B) ⊆
(C, D)⊆ bp-cl(A, B), then (C, D) is also a binary g⋆p-closed subset of (X, Y,M).

Proof. Let (U, V ) be a binary g-open set of a binary g⋆p-closed subset of M such

that (C, D) ⊆ (U, V ), as (A, B) ⊆ (C, D), we have (A, B) ⊆ (U, V ). As (A, B) is

binary g⋆p-closed set, bp-cl(A, B) ⊆ (U, V ), Given (C, D) ⊆ bp-cl(A, B). We have

bp-cl(A, B)⊆ bp-cl(C, D) and bp-cl(A, B) ⊆ (U, V ), we have bp-cl(C, D) ⊆ (U, V ),

whenever (C, D)⊆ (U, V ) and (U, V ) is binary g-open. Hence (C, D) is also a binary

g⋆p-closed subset ofM.

Theorem 2.13. If a subset (A, B) is a binary g⋆p-closed set if and only if bp-

cl(A, B)− (A, B) contains no nonempty, binary closed set.

Proof.Necessity. Let (E, F ) be binary g-closed set in (X, Y,M), such that (E, F )⊆
bp-cl(A, B)− (A, B). Then (A, B) ⊆ (X, Y )− (E, F ). Since (A, B) is binary g⋆p-

closed set and (X, Y )− (E, F ) is binary g-open then bp-cl(A, B) ⊆ (X, Y )− (E, F ).

That is (E, F ) ⊆ (X, Y ) − bp-cl(A, B). So (E, F ) ⊆ [(X, Y ) − bp-cl(A, B)] ∩ [bp-

cl(A, B)− (A, B)]. Therefore (E, F ) = (φ, φ).

Sufficiency. Let us assume that bp-cl(A, B) − (A, B) contains no non empty binary

g-closed set. Let (A, B)⊆ (U, V ), (U, V ) is binary g-open. Suppose that bp-cl(A, B)

is not contained in (U, V ), bp-cl(A, B)∩ (U, V )c is non empty, and binary g-closed set

of bp-cl(A, B)− (A, B) which is a contradiction. Therefore bp-cl(A, B)⊆ (U, V ), and

hence (A, B) is binary g⋆p-closed set.

Theorem 2.14. If (A, B) is both binary g-open and binary g⋆p-closed set in (X, Y ),

then (A, B) is binary g-closed set.
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Proof. . Since (A, B) is binary g-open and binary g⋆p-closed set in (X, Y ), bp-

cl(A, B) ⊆ (U, V ). But (A, B) ⊆ bp-cl(A, B). Therefore (A, B) = bp-cl(A, B). Since

(A, B) is binary closed and b-int(A, B) = (A, B), this implies bp-cl(A, B) = (A, B).

Hence (A, B) is binary g-closed set.

3. BINARY g⋆p-OPEN SET

Definition 3.1. A subset (A, B) of a binary topological space (X, Y, M) is called

binary generalized star pre-open set (briefly, binary g⋆p-open),if (A, B)c is binary

g⋆p-closed.

Theorem 3.2. (1) If (A, B) is binary open set in (X, Y,M), then it is binary

g⋆p-open.

(2) If (A, B) is binary g⋆-open set in (X, Y,M), then it is binary g⋆p-open.

(3) If (A, B) is binary gp-open set in (X, Y,M), then it is binary g⋆p-open.

Proof. It follows from the Theorem 2.2, 2.6 and 2.8.

Remark 3.3. For subset (A, B) of a binary topological space (X, Y,M),

(1) (X, Y )− bg⋆p-int(A, B) = bg⋆p-cl((X, Y )− (A, B))

(2) (X, Y )− bg⋆p-cl(A, B) = bg⋆p-int((X, Y )− (A, B))

Theorem 3.4. A subset (A, B)⊆ (X, Y ) is binary g⋆p-open if and only if (E, F )⊆
bp-int(A, B) whenever (E, F ) is binary g-closed set and (E, F )⊆ (A, B).

Proof. Let (A, B) be binary g⋆p-open set and suppose (E, F ) ⊆ (A, B), where (E, F )

is binary g-closed. Then (X, Y ) − (A, B) is binary g⋆p-closed set contained in the

binary g-open set (X, Y ) − (E, F ). Hence bp-cl((X, Y )− (A, B)) ⊆ (X, Y ) − (E, F )

and (X, Y )− bp-int(A, B) ⊆ (X, Y )− (E, F ). Thus (E, F )⊆ bp-int(A, B).
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Conversely, if (E, F ) is binary g-closed set with (E, F ) ⊆ bp-int(A, B) and (E, F ) ⊆
(A, B). Then (X, Y )−bp-int(A, B) ⊆ (X, Y )−(E, F ). Thus bp-cl((X, Y )−(A, B)) ⊆
(X, Y )− (E, F ). Hence (X, Y )− (A, B) is binary g⋆p-closed set and (A, B) is binary

g⋆p-open set.

Theorem 3.5. If bp-int(A, B) ⊆ (C, D) ⊆ (A, B) and if (A, B) is binary g⋆p-open,

then (C, D) is binary g⋆p-open.

Proof. Let bp-int(A, B) ⊆ (C, D) ⊆ (A, B), then (A, B)c ⊆ (C, D)c ⊆ bp-cl(A, B)c,

where (A, B)c is binary g⋆p-closed and hence (C, D)c is also binary g⋆p-closed by

Theorem 2.12. Therefore (C, D) is binary g⋆p-open.

Remark 3.6. If (A, B) and (C, D) are binary g⋆p-open subset of a binary topolog-

ical space, then (A, B)∪ (C, D) is also binary g⋆p-open in (X, Y ), as seen from the

following example.

Example 3.7. In Example 2.11, the binary g⋆p-open sets are {(φ, φ), (φ, {1}), (φ, {2}),
(φ, Y ), ({a}, {1}), ({a}, Y ), ({b}, {2}), ({b}, Y ), (X, Y )}. Let A = (φ, {1}) and
B = ({b}, {2}) are binary g⋆p-open sets. Then A∪B = (φ, {1})∪({b}, {2}) = ({b}, Y )
is also binary g⋆p-open set.

4. BINARY g⋆p-INTERIOR AND BINARY g⋆p-CLOSURE

Definition 4.1. Let (X, Y,M) be a binary topological space and let (x, y) ∈ (X, Y ).

A subset (U, V ) of (X, Y ) is said to be binary g⋆p-neighbourhood of (x, y) if there

exists an binary g⋆p-open set (G,H) such that (x, y)∈ (G,H) ⊆ (U, V ).

Definition 4.2. (1) bg⋆p-int(A, B) =
S{(C, D) : (C, D) is binary g⋆p-open set

and (C, D)⊆ (A, B)}
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(2) bg⋆p-cl(A, B) =
T{(C,D) : (C, D) is binary g⋆p-closed set and (A, B) ⊆

(C, D)}

Theorem 4.3. If (A, B) be a subset of (X, Y ). Then bg⋆p-int(A, B) =
S{(C,D) :

(C, D) is binary g⋆p-open set and (C, D) ⊆ (A, B)}.

Proof. Let (A, B) be a subset of (X, Y ). (x, y) ∈ bg⋆p-int(A, B).

⇔ (x, y) is a binary g⋆p-interior point of (A, B).

⇔ (A, B) is a binary g⋆p-neighbourhood of point (x, y).

⇔ There exists binary g⋆p-open set (C, D) such that (x, y)∈ (C, D)⊆ (A, B).

⇔ (x, y) ∈ S{(C, D) : (C, D) is binary g⋆p-open set and (C, D) ⊆ (A, B)}
Hence, bg⋆p-int(A, B) =

S{(C,D) : (C, D) is binary g⋆p-open set and (C, D) ⊆
(A, B)}.

Theorem 4.4. Let (A, B) and (C, D) be subsets of (X, Y ). Then

(1) bg⋆p-int(X, Y ) = (X, Y ) and bg⋆p-int(φ, φ) = (φ, φ)

(2) bg⋆p-int(A, B) ⊆ (A, B)

(3) If (C, D) is any binary g⋆p-open sets contained in (A, B), then (C, D)⊆ bg⋆p-

int(A, B)

(4) If (A, B) ⊆ (C, D), then bg⋆p-int(A, B) ⊆ bg⋆p-int(C, D)

(5) bg⋆p-int(bg⋆p-int(A, B)) = bg⋆p-int(A, B).

Proof. (1) Since (X, Y ) and (φ,φ) are binary g⋆p-open sets, by Theorem 4.3

bg⋆p-int(X, Y ) =
S{(C, D) : (C, D) is bg⋆p-open and (G, H) ⊆ (X, Y )}

= (X, Y )
S{(A, B) : (A, B) is a binary g⋆p-open set} = (X, Y ). Since, (φ, φ)

is the only binary g⋆p-open set contained in (φ, φ), bg⋆p-int(φ, φ) = (φ, φ).

(2) Let (x, y)∈ bg⋆p-int(A, B)⇒ (x, y) is a binary g⋆p-interior point of (A, B).

⇒ (A, B) is a binary g⋆p-neighbourhood of (x, y).
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⇒ (x, y) ∈ (A, B). Thus, (x, y) ∈ bg⋆p-int(A, B) ⊆ (A, B).

(3) Let (C, D) be any binary g⋆p-open set such that (C, D)⊆ (A, B). Let (U, V ) ∈
(C, D), then, (C, D) is a binary g⋆p-open set contained (x, y) in (A, B) is a

binary g⋆p-interior point of (A, B). That is (C, D) is a bg⋆p-int(A, B). Hence

(C, D)⊆ bg⋆p-int(A, B).

(4) Let (A, B) and (C, D) be subsets of (X, Y ) such that (A, B) ⊆ (C, D). Let

(x, y) ∈ bg⋆p-int(A, B). Then (x, y) is a binary g⋆p-interior point of (A, B)

and so (A, B) is binary g⋆p-neighbourhood of (x, y). This implies that (x, y) ∈
bg⋆p-int(C, D). Thus we have shown that (U, V ) ∈ bg⋆p-int(C, D). Hence,

bg⋆p-int(A, B)⊆ bg⋆p-int(C, D).

(5) Let (A, B) be any subset of (X, Y ). Then by definition of binary g⋆p-interior,

bg⋆p-int(A, B) =
T{(A, B) ⊆ (E, F ) ∈ bg⋆p-cl(X, Y )} if (A, B) ⊆ (E, F ) ∈

bg⋆p-cl(X, Y ), then bg⋆p-int(A, B) ⊆ (E, F ). Since (E, F ) is a binary g⋆p-

closed set containing bg⋆p-int(A, B). By (3), bg⋆p-int(bg⋆p-int(A, B))⊆ (E, F ).

Hence bg⋆p-int(bg⋆p-int(A, B)) ⊆ T{(A, B) ⊆ (E, F ) ∈ bg⋆p-cl(X, Y )} =
bg⋆p-cl(A, B). That is, bg⋆p-int(bg⋆p-int(A, B)) = bg⋆p-int(A, B).

Theorem 4.5. If a subset (A, B) of a space (X, Y ) is binary g⋆p-open then bg⋆p-

int(A, B) = (A, B).

Proof. Let (A, B) be a binary g⋆p-open subset of (X, Y ). We know that bg⋆p-

int(A, B) ⊆ (A, B). Also (A, B) is binary g⋆p-open set contained in (A, B). From

Theorem 4.4(3), (A, B) ⊆ bg⋆p-int(A, B). Hence, bg⋆p-int(A, B) = (A, B).

Theorem 4.6. If (A, B) and (C, D) are subsets of (X, Y ), then bg⋆p-int(A, B)∪bg⋆p-

int(C, D) ⊆ bg⋆p-int((A, B) ∪ (C, D)).
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Proof. We know that (A, B) ⊆ (A, B) ∪ (C, D) and (C, D) ⊆ (A, B) ∪ (C, D) and

we have by Theorem 4.4(4), bg⋆p-int(A, B) ⊆ bg⋆p-int((A, B) ∪ (C, D)) and bg⋆p-

int(C, D) ⊆ bg⋆p-int((A, B) ∪ (C, D)). This implies that bg⋆p-int(A, B) ∪ bg⋆p-

int(C, D) ⊆ bg⋆p-int((A, B) ∪ (C, D)).

Theorem 4.7. If (A, B) and (C, D) are subsets of space (X, Y ), Then bg⋆p-int((A, B)∩
(C, D)) = (bg⋆p-int(A, B) ∩ bg⋆p-int(C, D))

Proof. We know that (A, B)∩(C, D) ⊆ (A, B) and (A, B)∩(C, D) ⊆ (C, D). We have,

by Theorem 4.4(4), bg⋆p-int((A, B)∩ (C, D)) ⊆ bg⋆p-int(A, B) and bg⋆p-int((A, B)∩
(C, D)) ⊆ bg⋆p-int(C, D). This implies that

(1) bg⋆p-int((A, B) ∩ (C, D)) ⊆ bg⋆p-int(A, B) ∩ bg⋆p-int(C, D)

Again, Let (x, y)∈ bg⋆p-int(A, B)∩ bg⋆p-int(C, D). Then (x, y) ∈ bg⋆p-int(A, B) and

(x, y)∈ bg⋆p-int(C, D). Hence, (x, y) is a binary g⋆p-interior point of each sets (A, B)

and (C, D) is binary g⋆p-neighbourhood of (x, y), So that their intersection (A, B)∩
(C, D) is also binary g⋆p-neighbourhood of (x, y) hence (x, y) ∈ bg⋆p-int((A, B) ∩
(C, D)). Therefore

(2) bg⋆p-int(A, B) ∩ bg⋆p-int(C, D) ⊆ bg⋆p-int((A, B) ∩ (C, D)).

From 1 & 2, we get bg⋆p-int((A, B)∩ (C, D)) = bg⋆p-int(A, B)∩ bg⋆p-int(C, D).
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