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ABSTRACT

In this communication of the paper depicted the � − ��� of a group and then explain the idea of
� − ��� and −���� . More over , we generalized � − ��� relative to � −cyclic group and
investigate some characteristic of related algebraic results.
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1. INTRODUCTION
Zadeh L A[9] explored the new idea of fuzzy subsets of a nonempty set in 1965. Abou-Zaid

S[1] ,introduced the characteristic fuzzy subgroups of a finite group in 1991. Rosenfeld A[8], explored
the new concept of fuzzy groups in 1971. In 1984, Fuzzy Normal subgroups and fuzzy cosets derived
from Mukherjee N P and Bhattacharya P[7]. Liu W J[5], described the new idea of fuzzy invariant
subgroups and fuzzy ideals in 1982. In 1994, introduced the new notion of fuzzy orders relative to
fuzzy subgroups by Jae-Gyeom Kim[6]. In 1981, produced the new concept of fuzzy groups and level
subgroups in Das P S[4]. Asaad M[3], developed the new idea in groups and fuzzy subgroups in 1991. In
1988, Some properties of fuzzy groups in explored from the idea is Akgul M[2].

In this research paper arranged as that, section 2 basic fundamental elementary definition and
related the results which are through this research article. In section 3, we have define α −fuzzy orders
with respect to the α −fuzzy subgroups and α −fuzzy normal subgroups described the some algebraic
characteristic results and section 4, we will be introduced the α −fuzzy orders with respect to the
α −fuzzy cyclic group and their some generalization results explained.

2. PRELIMINARIES
Definition: 2.1[9]

Let X be a non-empty set . A ��� of the set X is a mapping μ : X→ [0, 1].
Definition: 2.2[8]

Let be a group. A of is a of if

(i) �(��) ≥ ���{�(�), �(�)}
(ii) �(�−1) ≥ �(�), for all �, � ∈ �.
(iii) From this definition, we clearly have �(�−1) = �(�), for all �, � ∈ �.
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Definition: 2.3[6]

Let � be a group. A ��� � of � is normal ( Invariant) in � if �(��) = �(��) for all �, � ∈ �.
Theorem: 2.4[8]

Let be a group and let be a of . Then

(i) �(�) ≤ �(�), for all �, � ∈ �.
(ii) ���(��−1) = �(�), then �(�) = �(�)

Theorem: 2.5 [7]

Let � be a group and let � be a ��� of �. Then � is normal in � if and only if �(�−1��) =
�(�), for all �, � ∈ �.

Theorem: 2.6 [4]

Let be a cyclic group of order , where is a prime number. If is a of , then for all
�, � ∈ �.

(i) If �(�) > �(�), �ℎ�� �(�) ≤ �(�).
(ii) If ( ) = ( ), then ( ) = ( ).

Theorem: 2.7 [2]

Let be a finite group and let be a of . Then

(i) �(��) ≥ �(�) for any integer � and for all � ∈ �.
(ii) If �(�)/�(�), then �(�) ≤ �(�) for �, � ∈ 〈�〉, where � ∈ �.
(iii) If (�(�), �) = 1, then �(��) = �(�), �ℎ��� � ∈ � ��� � ∈ �.

Theorem: 2.8

Let � be a group. For �, �, � ∈ �, we have

(i) If �� = �, then �(�)/�, where � ∈ �.
(ii) �(��) = �(�)/(�(�), �), where � ∈ �.
(iii) If (�(�), �(�)) = 1 and �� = ��, then �(��) = �(�) × �(�).
(iv) If � = �−1��, then �(�) = �(�).
(v) If �(�) = �� with (�, �) = 1, then � = �� = �� for some �, � ∈ � with �(�) = � and

( ) = . Further, such an expression for is unique.

Definition: 2.9 [6]

Let � be a ��� of a group �. For a given � ∈ �, the least positive integer � such that �(��) =
( ) is the of with respect to [briefly, ( )]. If no such exists, is of infinite with
respect to .

3. SOME CHARACTERISTIC OF �− ��� RELATIVE TO �−

Definition: 3.1
Let �� be a � − ��� of a group �. For a given � ∈ �, the least positive integer � such that

��(��) = ��(�) is the � − �� of � with respect to �� [briefly, ����(�)]. If no such � exists, � is of
infinite � − �� with respect to ��.

∴ �(�) and �(�) does not imply that of ����(�) and ����(�),
Example: 3.1.1

Let � = {�, �/�2 = �2 = (��)2 = �} be the Klein four-group. Define a � − ��� �� of � by
( ) = ( ) = and ( ) = ( ) = 1, where > 1. Clearly, ( ) = ( ) = 2, but
( ) = 2 and ( ) = 1.

Proposition: 3.2
Let �� be a � − ��� of a group �. For � ∈ �, if ��(��) = ��(�) for some integer �, then

( )/ .
Proof:
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Let ����(�) = � . If ∃ integers � ��� � ∶ � = �� + �, where 0 ≤ � < �.
Then, ��(��) = ��(��−��) = ��(��(��)−�)≥ ���{��(��), ��((��)−�)}
≥ ���{��(�), ��(��)} = ���{��(�), ��(�)} = ��(�).
Hence � = 0, by the choice of �. If �(�) is finite then ����(�) is clearly finite for all � − ��� �� of
�. If �(�) is infinite, then for each positive integer �, ∃ a � − ��� ��� of � ∶ ���� (�) = � as
follows. ∎
Example: 3.2.1

Let be an element of infinite order in the group . For each positive integer , define the
�� �� � ∈ 〈��〉,

� − ��� � � of � by � �(�) = {� ��ℎ������,
Where �� > �1. Clearly, �����(�) = �. ∎
Corollary: 3.2.2

Let �� be a � − ��� of a group �. Then ����(�)/ �(�) for all � ∈ �.
Proposition: 3.3

Let �� be a � − ��� of a group �, and let � and � be elements of � ∶
(����(�), ����(�)) = 1 and �� = ��. If ��(��) = ��(�), then ��(�) = ��(�) = ��(�).
Proof:

Let ����(�) = � and ����(�) = �. Then ��(�) = ��(��) ≤ ��((��)�) = ��(����).
Thus ( ) = ( )= ( ). Therefore, / , by pro.. (3.2). But ( ,
) = 1. Thus = 1, i.e., ( ) = ( ).
Hence ��(�) = ��(�) = ��(�). ∎
Within the proposition, although is normal, the belief = may not be omitted .
Corollary: 3.3.1

Let �� be a � − ��� of a group �, and let � and � be elements of � such that
( ( ), ( )) = 1 and = . If ( ) = ( ), then ( ) = (y)= ( ).

Neither the assumption (����(�), ����(�)) = 1 in pro…(3.3) nor the assumption
(�(�), �(�)) = 1 in corollary 3.3.1 can be omitted. In fact, in example 3.1.1 ��(�) = ��(�) ≠
��(�), but ����(�)=����(�) = �(�) = �(�) = 2. ∎
Theorem: 3.4

Let �� be a � − ��� of a group �. Let ����(�) = �, where � ∈ �. If � is an integer with
= ( , ), then ( ) = / .

Proof:
Let ( ) = . First we have

(( ) ) = ( ) for some integer
≥ ��(��) = ��(�).

Thus �/�/� by pro..(3.2). Because � = (�, �), ∃ integer � and � ∶ �� + �� = �.
We the have

( ) = ( ( + )) = ( )
≥ ���{��((��)��), ��((��)�)�)}
≥ ���{��(��), ��((��)�)}
= { ( ), ( )} = ( ).

This implies that �/�� i.e., �/�/�. Consequently , � = �/�. ∎
Proposition: 3.5

Let �� be a � − ��� �. Let ����(�) = �, where � ∈ �. If � is an integer with (�,�) = 1,
then ( ) = ( ).
Proof:

Because (�,�) = 1, ∃ integers � and � ∶ �� + �� = 1.
We then have

( ) = ( + ) = (( ) )( ) ))
≥ ���{��(��)�), ��(��)�)}
≥ ���{��(��), ��(��)}
= { ( ), ( )}

= ��(��) ≥ ��(�). ∎
Theorem: 3.6

Let �� be a � − ��� of a group �. Let ����(�) = �, where � ∈ �. If � ≡ �(��� �), where
�, � ∈ �, then ����(��) = ����(��).
Proof:

Let ( ) = and ( ) = . By the assumption, = + for some integer .
Now, (( ) ) = (( + ) ) = (( ) ( ) ))
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= { ( ), ( )},

≥ ���{��(��)�), ��(��)��)}
≥ ���{��(�), ��(��)}

And so �/�. Similarly, �/�. Thus we have � = �. ∎
Theorem: 3.7

Let �� be a � − ��� of a group �, and let � and � be elements of � ∶ �� = �� and
(����(�), ����(�)) = 1. Then ����(��) = ����(�) × ����(�).
Proof:

Let ( ) = , ( ) = and ( ) = .
Then (( ) ) = ( )

≥ ���{��((��)�), ��((��)�)}
≥ ���{��(��), ��(��)}

= { ( ), ( )} = ( ).
Thus / ,Now ( ) = (( ) ) = ( ). Besides,
( ( ), ( )) = 1 .
∴ ��(��) = ��(��) = ��(�) both � and � divide � .
∴ ��/�, because (�, �) = 1 ⇒� = ��. ∎
Corollary: 3.7.1

Let �� be a � − ��� of a group �, and let � and � be elements of � ∶ �� = �� and
(�(�), �(�)) = 1. Then ����(��) = ����(�) × ����(�).

∵ supposing �� is normal subgroup, the assumption �� = �� may not be omitted.
Example: 3.7.2

Define a � − ���� �� of the symmetric group �4
( ) = { = ,

�1 ��ℎ������,
Where > 1. Now, let = (1 2) and = (2 3 4). Then ( ) = 2, ( ) = 3,
����(��) = ����(��) = 4, and �� ≠ ��. ∎
Theorem: 3.8

Let �� be a � − ��� of a group �. For � ∈ �, if ����(�) = �� with (�, �) = 1, then ∃ �
and � in � ∶ � = �� = ��, ����(�) = � and ����(�) = �. Furthermore explain for � is unique in
the sense of � −fuzzy grades, i.e., if (�, �) and (�1, �1) are such pairs, then ��(�) = ��(�1) and
( ) = ( 1).

Proof
Because (�, �) = 1, ∃ integers � and � ∶ �� + �� = 1.

Here ( , ) = ( , ) = 1. Let = and = . Then = = , and by theorem 3.4,
( ) = ( ) = and ( ) = ( ) = . This proves the existence of and .

Let ( , ) and ( 1, 1) be pairs satisfied.
since ( ) = ( 1) = and ( ) = ( 1) = ,

⇒��(�) = ��(�1−��) = ��(���) = ��(������) = ��((��)��)
= (( 1 1) ) = ( 1 1 )= ( 1 )
= ��(�11−��) = ��(�1).

Similarly, ( ) = ( 1).
This proves the uniqueness of (�, �). ∎
Theorem: 3.9

Let �� be a � − ���� of a group �. Then ����(�) = ����(�−1��) for all �, � ∈ �.
Proof:

Let �, � ∈ �, then we have ��(��) = ��(�−1���) = ��((�−1��)�) for all � ∈ �.
Thus ����(�) = ����(�−1��). ∎
∴ �� is not normal in �.
Example: 3.9.1

Let �3={�, �/�3 = �3 = �, �� = �2�} be the group with 6 elements. Define a � − ��� �� of
3 by

��(�) = { �� �� � ∈ 〈�〉,
�1 ��ℎ������

Where �� > �1. Then �−1�� ∉ 〈�〉, and so ����(�) = 1 ≠ ����(�−1��). ∎
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4. ALGEBRAIC PROPERTIES OF � − ��� IN A CYCLIC

GROUP
Lemma: 4.1

Let �� be a � − ��� of a cyclic group � and let � and � be any two generators of �. Then
( ) = ( ).

Proof
We have apply for Theroem..(3.4).

Theorem: 4.2
Let �� be a � − ��� of a cyclic group � of finite order �. Then, ∀ �, � ∈ �;

(i) If ( ) = ( ), then ( ) = ( ).
(ii) If ( )/ ( ), then ( )/ ( ).
(iii) If �(�) > �(�), then ����(�) ≥ ����(�).

Proof
Let � = 〈�〉. Let � = ��, � = ��, and ����(�) = �.

is a specific generator of .
Then ( ) = /( , ), ( ) = /( , ), ( ) = /( , ) and / ,

(i) Follows from (ii).
(ii) If ( )/ ( ), then ( , )/( , ), and so ( , )/( , ), because / . Thus ( )/

( ).
(iii) If �(�) > �(�), the (�, �) < (�, �), and so (�,�) ≤ (�,�), because �/�. Thus

����(�) ≥ ����(�). ∎
Theorem: 4.3

Let �� be a � − ��� of a cyclic group � of finite order. Then , ∀ �, � ∈ �:
(i) If ( ) = ( ), then ( ) = ( ).
(ii) If ����(�)/����(�), then ��(�) ≥ ��(�).
Proof

Let � = 〈�〉. Let � = ��, � = ��, and ����(�) = �.
is a specific generator of .

Then ( ) = /( , ) and ( ) = /( , ),
Let � = ℎ(�,�), � = �(�,�) and � = �(�,�) = �(�,�) for some ℎ, �, �, � ∈ �.
If ����(�)/����(�), then (�,�)/(�,�). So �/�� = ℎ(�,�)� and �/�� = ℎ(�, �)�,
⇒ ��(�) = ��(��)

= ��(��(��+��)) for some �, � ∈ �, since (�, �) = 1
= ��(��������) ≥ ���{��(����), ��(����)}

≥ ���{��(��), ��(��)} = ���{��(�), ��(�)} = ��(�). ∎
Corollary: 4.3.1

Let �� be a � − ��� of a cyclic group � of finite order. Then, ∀ �, � ∈ �:
(i) If �(�) = �(�), �ℎ�� ��(�) = ��(�).
(ii) If �(�)/�(�), �ℎ�� ��(�) ≥ ��(�). ∎
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