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Abstract-The aim of the present dissertation is to make a quantitative comparison of 

computed of computed solution of some ordinary differential equations by different numerical 

techniques and to draw out certain observations with some fundamental results from linear 

algebra, theory of differential equations and numerical solution of differential equations.   

 
  

Introduction 1.1: In most of modern physical situations we need to solve a set of differential 

equations subject to some initial conditions and/or boundary conditions in the areas, 

particularly in mathematical physics and mathematical biology we will face partial differential 

equations, integral differential equations, difference equations and differential equations of 

even more complex type.   

 Determining the deflection of simply supported beam where the deflection and derivative at 

the and points are specified is a typical example of boundary value problems.  The heat flow 

problem in general fall in the boundary value problem because the temperature and temperature  

gradients are given at the two ends. The vibrating strings membranes and flow of fluids through 

tubes are some examples which involves boundary value problems.     The procedure  for 

solving boundary problems in partial differential equations very much demand the procedure 

employed for solving ordinary differential equations with boundary  conditions, may be a 

Laplace transform method or separation of variables method etc. Hence the study of ordinary 

differential equations is the basis for study of partial differential equations.   

 Here we consider the numerical study of ordinary differential equations with two point 

boundary values.  Some three examples of solving two point boundary value problems have 

been considered for this study.  Quasilinearization   technique.  Shooting method, finite 

difference method and finite element method are employed while working out the solutions of 

these examples.  
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1.2.  CLASSIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS   

  

 A differential equation is an equation which involves differential coefficients.  

The order of a differential equation is the order of highest derivative appearing in 

it. A differential equation will have unique solution when it is subject to as many 

conditions as the order of the equation.  If the conditions mentioned on a 

differential equation are less than the order of the equation the equation will have 

infinite solutions represented by K parameter family of curves where K= order – 

number of conditions.  If the conditions on a differential equation are more than 

the order the equation the equation may  not have a solution.  A differential 

equation is called well posed if the equation is given with as many conditions as 

order of the equation.  Otherwise the problem is said to be ill posed.  A differential 

equation is called linear if the unknown and its derivatives appeared only once in 

each term with degree one.  Otherwise the equation is called non-linear.  For 

example a second order linear equation will be of the form  

 d 2 y dy 

2 a1(x) a2(x)y  f (x)..........(1.2.1) dx

 dx 

 This equation is called homogeneous if the right hand side function f(x) is zero.  

Otherwise it is called nonhomogeneous.  The conditions on these equations are 

of the form  

dy(a)  1y(a) 1

 dx 1  

 dy(b)          ……(1.2.2)  

2 y(b) 2 2  dx  

  If  's are zero the conditions are called homogeneous boundary conditions.   

  If Y(a) = 1    y(a) =  2  
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hen the conditions are called initial conditions.   

    If the conditions are mentioned in general form as   

 g y(a), y(b), y(a), y(b)  0         …..(1.2.3.)  

the conditions are called nonlinear.   

  

  

  

  A first order linear equation is of the form   

dy 

 P(x)y  f (x), y(o)  a     ……(1.2.4.) dx 1 

the solution of this equation is given by  y(x) 

= exp  

A first order nonlinear differential equation is of the form   

dy 

  f (x, y)      y(O )  a1      ……..(1.2.6)  

dx 

 Any linear equation of order n can be split into n first order equations and this set of n equations 

can be put in matrix form as  

d y 

   

  

 Ay 

   

Where P1, P2……..Pn are coefficients of yn-1,yn-2, …………….y.  

  

The general form of second order nonlinear equation with non homogeneous 

boundary conditions is of the form  

Where  

 

dx 

    

 y  y1  

 

y  
 
y  y2   

 

y( n )  yn  

    

 0 

 0 

and A=  

 0 

 

 Pn 

1 

0 

0 

 Pn 1 

0....... 

1..... 

0...... 

........ 

0  

0  

      

 

P1  

      

  

              …..(1.2.7)  
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    y  =  f(x,y,y’) with   

    y(xo)=a1  y(xn)=a2           …..(1.2.8)  

here the aim is at the solution of second order differential by various numerical 

methods.   

  

1.3. SOLUTION OF TRIDIAGONAL SYSTEM OF EQUATIONS:  

Matrices occur in a variety of problems of interest; for example in solution 

of linear algebraic and eigen value problems.  The matrix notation is convenient 

and powerful in expressing basic relationship in fields like elasticity and electrical 

engineering.  While solving boundary value problems the in finite  difference 

method or in finite element method tri diagonal system of  

equations are extracted.     

Consider the system of equation defined by   

b1 u1 + c1 u2            = d1    

a2 u1  + b2 u2 + c2 u9         = d2    

  a3 u2 + b3 u93 + c3 u4       

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

= d3     

      an un-1+ bn un = dn          . . . . . (1. 3. 1.)  

  The matrix coefficient is   

b1 c1 0 0 0 0 . . . .  0   

          A2 b2 c2 0 0 0 . . . . 0  

          0 a3 b3 c3 0 0 . . . .  0  

 A  =      . . . . . . . . . . . .  

          0 0 0 . . . an-1 bn-1 cn-1   

          0 0 . . . . . ….. . an bn    

  

 Matrix of type (1. 3. 2) is called tri diagonal matrix which occur frequently in the solution of 

dinary differential equations by finite element method of finite difference method.   The method 

of factorization can be conveniently applied to solve the system (1. 3. 1) using computational 

procedure given by Thomas. This procedure is given in detail in foregoing chapter 3(3. 1a).  
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CHAPTER-2: In this chapter we briefly outline some of numerical techniques employed in 

computing the solutions of two point boundary value problems.   

1) Quasilineraization technique  

2) Shooting method (SHM)  

3) Finite difference method (FDM)  

4) Finite element method (FEM)  

  

2.1  QUASTILINEARIZATION  

We now turn out attention to the study of nonlinear second order differential equation 

of the form.   

     y “  =   f(y, y’, x)         . . . . . . (2. 1. 1.)  

  

  

with the two point boundary conditions   

      y(0)   = a1     y(b)  = a2  

We posses no convenient or useful technique for representing general solution in terms of a 

finite set of particular solution as in the linear case. Consequently we posses no ready means 

of reducing the transcendental problem in soling (2. 1. 1) to an algebraic problem as is the 

situation in case f(y, y’, x) is linear in y and y’.  

 To obtain an analytic foot hold and simultaneously to provide computational algorithms, we 

must have recourse to approximation techniques. Fixed point methods so valuable in 

establishing existence of solutions are of no use numerically. Generally few of the standard 

classical techniques as successive approximations are of much utility numerically. None the 

less of now a number of powerful computational methods exists. We shall now study the 

quasilinearization technique.   

  Consider the second order nonlinear equation  

           y’’ = f(y’,y,x)              . . . . (2. 1. 2)  

With nonlinear boundary conditions of the form   

    g1 [y(0), y’(0)] = 0      g2 [y(b), y’(b)] = 0  

Or even more generally   

g1[y(0), y'(0), y(b),y'(b)] = 0  

 g2[y(0), y'(0), y(b), y'(b)]  0   . . . . (2. 1. 3)  
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We can now apply quasilinearization to both equation and the boundary conditions. Thus in the 

case of equation (2. 1. 2) subject to the conditions (2. 1.3) we generate sequence ( yn (x) ) by 

means of the equation.   

  Y’’n+1 = fy’(y’n , yn, x) (y’n+1 – y’n) + fy (y’n, yn, x) (yn+1 – yn) + f(y’n, yn, x)  

. . . . . (2. 1. 4)  

With the liberalized   

Boundary conditions  

g1y[yn(0), y’n(0)] [yn+1 (0) – yn (0) ] + g1y’ [yn(0), y’n(0)] [y’n+1 (0) – y’n(0)]=0 . . . . . (2.1.5.)  

 and a similar equation can be derived from g2  for the point x=b   

  Consider the example   

2( y' )2 

        Y’’ = - y +   

y 

 Y(-1) = y(1) = 0.324027       . . . . . (2. 1. 6)  

2( y' )2 

  Here f(x, y, y’) = -y +    

y 

  

Consider the Taylor series expansion of (2. 1. 6)  

 y''n 1  f ( xn , yn , y'n ) ( y'n 1 y'n )fy'    . . . . . (2. 1. 7)  

We have fy = -1 -2 (y’)2 / y2
  

And   f y’ = 4y’ / y  

  Put n = 0, substituting these values in (2. 1. 7)  

  

2( y'0 )2 ( y  2( y' )2  y' y''1  y0  y0  0  y0 )  1  

y002  ( y'1  y'0 )4 y00  . . . . . (2. 1. 8)  

We have boundary conditions y(-1) = y(1) = 0.324027  

Let.y0(x)  Ax  B y0
( 1) 

A  B  0.324027  y0(1) 

 A  B  0.324027 

Solving these two equations we get  

      A=0,  B=0.324027  
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y0(x)  0.324027 

    

y'0 (x)  0 

Substituting these values in equation (2. 1. 8) we get    

    y’’1  = -0.324027 + [y1 – 0.324027] (-1)    

 y’’1 = - 0.324027+0.324027 – y1  

 i.e. in the form y’’ = - y         . . . . (2. 1. 9)  

is the required linear equation with the boundary conditions y(-1) = y(1) = 0.324027  

The numerical solution of this equation is computed by three methods namely 

shooting method, finite difference method and finite element method and the details are given 

in chapter 3 section 2, as example 2.  

  

2.2  SHOOTING METHOD.  

  One of the very popular approaches to solve a two point boundary value problem is to reduce 

it to a problem in which a program for solving initial value problem can be used.   

  In the shooting method we create an initial value problem by assuming a sufficient number of 

initial values. Solve this initial value problem and compare the computed value with the given 

conditions at the other boundary. Repeat the solution with varying values of assumed 

conditions until agreement is attained at the other boundary.   

  Consider the two point boundary value problem   

  

    Y’’=f(x, y, y’)   a<x<b  

  y(a )  Y(b )    

 A y'(a )  B Y'(b ) 21         …..(2.2.1)  

The terms A and B denote given square matrices of orders 2x2 and 1 and 2 Are given 

constants.  

  The theory for the nonlinear problems is far complicated than that for the linear 

problems. We given an introduction to the theory for the following more limited problems.  

      ''  f ( x, y, y' )    

   a0 y(a )  a1y'(a ) 1      

 b0y(b) b1y'(b) 2  
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 We now develop a method for the boundary value problem (2.2.2) consider the initial value 

problem  

 y"  f ( x, y, y' )   

y(a )  a1s  c1 1  

y'(a )  a0s  c0 1   

  Depending on the parameter s, where c0 and c1  are arbitrary constants satisfying  

  

      a1c0 a0c1  1  

  

Denote the solution of (2.2.3) by y(x,s) then it is straight forward to see that   

  

      a0 y(a,s ) a1 y'(a,s ) 1  

For all s for which y exists.  

  

  Since y is a solution of (2.2.1) all that is needed for it to be a solution of (2.2.1) is to 

have it satisfy the remaining boundary condition at b.  

  

  This means that y(x,s) must satisfy  

    ( s )  b0 y(b,s )
 
b1 y'(b,s ) 2 

 
0      ……..(2.2.4)  

  This is a nonlinear equation for s. if s* is a root of ( s ). Then y(x,s) will satisfy the 

boundary value problem (2.2.1). it can be show that under suitable assumption of f and it’s  

boundary conditions (2.2.3) will have unique solution s* . We can use a roof finding method 

for nonlinear equations to solve for s* .  

  

  The method is called shooting method because is resembles artillery problems 

artillery problem. One sets the elevation of the gun fires a preliminary round at the target one 

zero’s in on it by using intermediate of the guns elevation.   

  

  Any of the root finding methods can be applied to solve ( s )  0. Each evaluation of 

( s ) involves the solution of the initial value problem (2. 2. 3) over [a, b] and consequently 
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we want to minimize the number of such evaluations. As a specific example of an important 

and rapidly convergent method we look at new tons method.   

  

 Sm 1  Sm  
( sm )  m=0, 1, . . . . . .     . . . . (2. 2. 5) '( sm ) 

  To calculate '( s )differentiate (2. 2. 3) to obtain   

     '( s )  bo (b )  b1 s'(b )          . . . . . . (2. 2. 6)  

     Where s( x ) 
y( x,s )

         

. . . . . . (2. 2. 7)  

s 

  To find s ( x )differentiate the equation   

    Y’’’ (x, s) = f[ x, y(x,s),  y’(x,s) ]      

 With  respect to s.  

Then s satisfies the initial value problem   

  s
''(x)  f2[x,y(x,s),y'(x,s)] s

'(x)  f3[x,y(x,s),y'(x,s)] s
'(x) . . . (2. 2. 8)  

  

 s (a )  a1      s'(a )  a0  

  

  The functions f2 and f3 denote partial derivatives of f(x, u, v) with respect to u and v.  

The initial values are those obtained in (2. 2. 3) and from the definition of s .  

  

 The procedure of shooting method is developed as an algorithm in chapter 3 section 1 and used 

for solving examples.   

  

  

  

2.3  FINITE DIFFERENCE METHOD   

 There exists many methods for solving second order boundary value problem. Of these finite 

difference is a popular one.   

  Consider a two point boundary value problem   
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    Y’’(x) + f(x) y’(x) + g(x) y(x) = r(x)        . . . . (2. 3. 1)  

 With the boundary conditions  

 Y(x0) = a     y(xn) = b       . . . . (2. 3. 1)  

 The finite difference method for the solution of a two point boundary value pr oblem consists 

of replacing the derivatives occurring in the differential equation (and the boundary conditions 

as well) by means of their finite difference approximations and then solving the resulting 

system of equations by a standard procedure.  

  To obtain appropriate finite difference approximations to the derivatives expand  

h2 

y9x+h) in Taylors series we have y(x+h) = y(x) + h y’(x) +   y''( x )  ......  . . .( 2. 3. 3) 2 

From which we obtain   

      y'( x )  y( x  hh)2  y( x )  h2 y''( x )  

 Thus we have y'( x )  y( x 
 h

h
)

2

 y( x ) 
0(h)        

  . . (2. 3. 4)  

  Similarly expanding y(x-h) in Taylors series givens   

h2 

 y(x - h)  y( x )y'( x )   y''( x )            . . . . . . (2. 3. 5)  

2 

From  which we obtain   

y(x)-Y(x-h) 

 y(x)   0(h)           . . . . (2. 3. 6)  

h 

  A Central difference approximation for y’(x) can be obtained by subtracting (2. 3. 5) 

from (2. 3. 3) we thus have   

y'( x )  y( x  h) ( x  h) 0(h2 )  

2h 

  It is clear that (2.3.7) is a better approximation to y1(x) than earlier. Again adding  

(2.3.3) and (2.3.5) we get an approximation for y”(x)  

 y''(x)  y(x h)  2y(x)  y(x  h)  0(h2)     ……(2.3.3)  

2h 
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In a similar manner it is possible to derive finite difference approximations to higher 

derivation. To solve the boundary value problem definer by (2.3.1) and (2.3.2) we divide the 

rang [x0,xn] into n equal sub intervals of width h so that  

  Xi = x0+ ih              I = 1,2,3……..n  

The corresponding value of y at these points are denoted by  

  Y(xi) = yi = y(x0+ih)           i=1,2……..,n  

From equations (2.3.7) and (2.3.8) value of y’ (x) and y” (x) at the point x=x1 can now be 

written as  

y'i 1 yi 1 0(h2) y'1  

2h yi1 1  2yi  yi 1

 0(h2)  

And   y''i1  h2  

Satisfying the differential equation at the point x = x1 we get   

y’’i+fi y’i +gi yi = ri  

Substituting the expression for y’1 and y’’1 this gives   

yi 1  2y2
i  yi 1  fi yi 12 hyi 1  gi yi  i1 

h 

   i=1, 2, . . . . . . . . . . n-1 Where    yi = y(xi)  

       gi = g(xi)  etc.  

Multiplying through out by h2 and simplifying we get   

h  
2)yi1  (1  

h 
fi)yi 1  rih2   . . . . (2. 3. 9) (1  fi)yi 1  ( 2  gih 

 2 2 

i = 1, 2, . . . . . . . . . . . . . . . n-1  

With        y0 = a          yn = b          

 . . . . . (2. 3. 10)  

Equation (2. 3. 9) with (2. 3. 10) comprises a tri diagonal system which can be solved.  The 

solution of tridiagonal system constitute an approximate solution of the boundary value 

problem defined by ( 2. 3. 1) and (2. 3. 2.)   

  The algorithm for above procedure is presented in chapter 3 (3. 1c).  
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2.4.  FIINITE ELEMENT METHOD   

  In the finite difference approximation of a differential equation. The derivatives in the 

equation are replaced by difference quotients which involves the values of the solution at 

discrete mesh points of the domain.   

The resulting discrete equations are solved after imposing boundary conditions for the values 

of the solution at the mesh points. Although the finite difference method is simple concept its 

suffers from several disadvantages. The most notable are the inaccuracy of the derivatives of 

the approximated solution, the difficulty in imposing the boundary conditions along nonstraight 

boundaries, the difficulty in accurately representing geometrically complex domains and the 

inability to employ no uniform and non rectangular meshes.   

 The finite element method over comes the difficulty of the variational methods because it 

provides a systematic procedure for the derivation of the approximation functions.   The finite 

element method is an approximate method of solving differential equations of boundary and/or 

initial value problems in engineering and mathematical physics. In this method a continuum is 

engineering and mathematical physics. In this method a continuum is divided into  many small 

elements of convenient shapes choosing suitable points called nodes with in the elements. The 

variable in the differential equation is written as a linear combination of appropriately selected 

interpolation functions and the values of the ariable or its various derivatives specified at the 

nodes. Using ariational principles or weighted residual methods the governing differential 

equations are transformed into finite element equations governing all isolated elements. These 

local elements are finally collected together to form a global system of differential or algebraic 

equations with proper boundary and/or initial conditions imposed and hence solved.   

  

GALERKIN METHOD TO DERIVE FINITE ELEMENT EQUATIONS   

  Consider the differential equation    

 d2 y 2 y  f ( x )  0  

      
  

dx2  

By substituting the approximarte function into this differential equation we expect to have 

commited an error or a residual . Thus we any write.  

     
  d

dx2 y
2 

2 y  f ( x )         . . . . (2. 4. 1.)  
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We construct an inner product of this residual and the global finite element interpolation 

function 1 .  

( , 1 ) 0  1 d
dx2 y

2 
2 y  f ( x ) 1dx  0    . . . 

. . (2. 4. 2.)  

    

  

This an orthogonal projection of the residual space on to a subspace spanned by 1 .  

Integrating (2. 4. 2) by parts yields.  

 dx
dy

1 0
1 

0  1 dx
dy d

dx 1 2 y 1  f ( x ) 1 dx  0   

   . . . . . ( 2. 4. 3)  

The boundary term obtained here is the natural boundary condition. We note that the 

interpolation function 1 does not include the boundary. If a two dimensional problem were 

considered, we would have required two types of interpolation functions : one for the interior 

domain and other for the boundary surfaces; that is   

     Y(x, y) = 1 (x, y) y1         . . . . . (2. 4. 4)  

And   

       Y( ) = k
* ( ) yk        . . . . (2. 4. 5)  

Where i denotes all interior global nodes in  and k denotes all boundary conditions along  

. Clearly k
* (r) is the interpolation function which represents the variation of dy/dn along the 

boundary surface (line) so that the global boundary integral of the type.  

      dYdn k*( )d eE 1 a0 dydn(e) n*(e) (NKe) d   

( N = boundary element nodes )     . . . . . . ( 2. 4. 6) Can be performed 

as the unior of each of the boundary elements. However in a one dimensional problem there 

exists no boundary surface; there are two boundary points, one at each end of the domain. 

Returning to the boundary term ( 2. 4. 3) if dy/dx is specified at ends, 1 must be the boundary 

interpolation k
* is simply a unity.   
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 * (e) * (e) 1,          1* ( Z j ) 1 j ,  

1 N1 N  

 1
*(e )( ZM ) NM      . . . . . ( 2. 4. 7)  

Here i, j and N, M represents the boundary nodes for the global and local system with onlyu 

boundary element and boundary node being involved. Therefore, rewrite (2. 4. 3) in the form   

 1 dY d   dY 1 

0  dx dx1 2 y 1  f ( x ) 1 dx  dx 1 0  

And   

dY *   F1  dY    A1 jYj  F1  1 x 

0,x 1  

 dx dx 1( x 0,x 1 ) 

If the given problem is the Dirichlet type, then we simply have A1j Yj = F1. . . . . (2. 4. 8) 

Where   

  A1 j  1 ddx 1 
d

dx j 2
1 j dx       

 . . . . (2. 4. 9)  

0  

And   

1 

 F1  f 1dx            .  . . . (2. 4. 10)  
0 

Here A1j is nxn positive definite matrix. The equation (2. 4. 8) is called the global finite element 

equations. It may be said that the global eqations (2. 4. 8) represent the collection or assembly 

of local equations, A glance at (2. 4. 9) and (2. 4. 10) indicates that the local element matrices 

A(e)
NM and the local inpur vector F(e)

N are assembled according to the Boolean matrices which 

place the appropriate local nodal contributions to the corresponding global system. Equation 

(2. 4. 8) comprise a tridia system which can be solved by the method outlined in chapter-1 

section 3. The solution of this traditional system constitutes an approximate solution of the 

boundary value problem. The algorithm for this method is presented in chapter 3 (3. 1d).  

CHAPTER – 3  
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3.1  ALGORITHMS   

 In this chapter the algorithms of 1) Solution of tri diagonal method 2) Shooting method 3) 

Finite difference method 4) Finite element method have been given. These algorithms are used 

in writing computer programs which are employed in obtaining numerical solutions of 

examples :   

Example 1 :  

With      y’’ = y  

          Y(0) = 1  

          Y(2) = 7.38905  

Example 2 :  

2( y' )2 

        y  - y   

y 

With     y(-1) = 0.324027      y(1)  = 0.324027  

Example 3 :  

x 

        y  x  (1-  )y  

5 

  

  

With      y(1) =  2      y(3) = -1  

3.13  SOLVING A TRIDIAGONAL SYSTEM OF EQUAITONS  

A Computational procedure due to Thomas to solve tridiagonal systems of equations 

represented by matrix (1. 3. 2) is given below.  

*  Solving tridiagonal systems of equations   (i) Set 1 b1 

and compute   

 a1c1 1            1 = 2, 3, . . . . n  

     1  b1  

1 1 

d1 and compute   

(ii) Set 1  

b1 
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       1  d1  a1 1 1         

1 = 2, 3, . . . . . n  

1 

(iii) Finally, Compute u1 from   

 c1u1 1          1 = n-1, n-2, . . . . 1  

     u1 1  

1 

 Where      u1 1  

  This p ro c  e dure has been found to be ery efficient for use on a digital computer.   

  

3.1b            SHOOTING METHOD   

* To solve a second order BVP by Shooting method   

* The problem is y’’ = F(x, y, y’)   

* With y(a1) = b1 y(a2) = b2   Read h, g1, g2, a1, b1    xf = a2    x0 = a1    y0 = 

b1   dy0 = g1   

  Call rkm (F, k1, k2, y, dy, x)  

  Print x, y   

  If  ( x  xf )GOTO 10   

10  r1  = y  

  Now dY0 = g2   

  

  

  

Call rkm (F, k1, k2, y, dy, x)  

  Print x, y   

  If  ( x  xf )GOTO 20  

20  r2 = y  

  D = b2  

  dy0 = g1 + (g2 – g1) (D-r1)/(r2-r1)  

  Call rkm (F, k1, k2, y, dy, x)  

  Print x, y   

  If  ( x  xf )GOTO 30  
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30  Stop   

  End   

  Subroutine rkm (F, k1, k2, y, dy, x)  

  

h2 

40  k 

1  22 F( x0 , y0 )  

 h2 2 2 4 

k1   F( x0  h, y0  hdy0  k1 )  

 22 3 3 q 

y1 = y0 + h dy0 + ( k1 + k2 ) /2 

dy1 = dy0 + (k1 + 3k2)/2h x = 

x0 + h Print x, y1  

Now  x0 = x  y0 = 

y1  

dy0 = dy1 

Return  

End  

Function F(x, y, y’)  

Return  

End  

  

  

  

  

  

  

  

3.1c   FINITE DEFERENCE METHOD   

C  To Solve a second order BVP by finite difference method   

The given equation is y’’ + fy’ + gy = 

r  With y(a1) = b1 and y(a2) = b2 h = (a2 

– a1) / n 1 = n-1  

Do for i = 1, n  
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h    

a(1) = (1-  f )  

2 b(1)  

(gh2 2) 

h 

  c(1)  (1   f )  

2 d(1)  

rh2 

  End to loop  

  

  Set (1)  b(1) and co mpute  

  (1)  b(1)  a(1)c(1
1)

       for 1=2, 3, . . . n  

(1 1) 

  Set (1)  d(1)/ b(1)and compute  

  (1)  d(1)  a(1)
(i 1)

  for i = 2, 3, . . . . n  

(i )  

 Finally compute   

  u(1) (1)  c(1)u(1
 1)

   for 1 

= n-1, n-2, . . . 1 (1) 

  Where u(n) = (n)  

  Stop   

  End   

3.1d          FINITE ELEMENT METHOD  

  

C  To solve a second BVP by Finite element method  

  The given problem is y’’ = F(x, y, y’)  

  Read n   

  do for 1=1, 2  

 do for j=1, 2  
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a(1,1)  f1( ,h) 

a( 2,2 )  f2( ,h) 

    

a(1,2 )  g1( ,h) a( 

2,1)  a(1,2 ) 

  End do  loop  

  do for 1=2, 3, . . . . . n-

1   do for j=2, 3, . . . . .n-1  

 b(1, 1) = a(1, 1)+a(2, 2) b(1, 

j+1)=a(2,1) b(1+1, j) = a(2, 1) 

End of do loop  

do for 1 = 1, 2, . . . . . 

n b(1) = b(1, 1) a(1) = 

b(1+1, j) c(1) = b(1, 

j+1) d(1) = f(1)  

  

  

c.  Solution by solving this tridiagonal system   

  Set (1)  b(1)and compute   

a(1)c(1
1)

 

   (1)  b(1)          for 1=2, . . . . . n  

(1 1) 

Set (1)  d(1)/ b(1) and compute   

(1)  d(1)  a(1)
(1  1)

        for 1 = 2, 3, 

. . . . .n (1) 

Finally compute   

 u(1) (1)  c(1)u(1
 1)

       for 1 = n-1, n-2 . . .. . 1  

(1) 

Where u(n) = (n)  

Stop  

End  
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3.2  NUMERICAL SOLUTIONS OF EXAMPLES   

 In this section the examples 1, 2 and 3 with actual solutions (where ever possible) and 

numerical solutions using shooting method, finite difference method and finite element method 

in forms of tables are presented.   

  

  

  

Example 1:   

    Y’’ = y   

With            y(0) = 1  

            Y(2) = 7.38905  

Analytical solution is  y = ex  

  

Example 2 :  

2( y' )2 

      y''  y   

y 

With            y(-1) = 0.324027  

            Y(1) = 0.324027  

Qusilinearizatioin technique (vide 2.1 equation no (2. 1. 9) reduced this equation to the form   

  Y’’ = -y   y(-1) = y(1) = 0.324027  

1 

Analytical solution is ex  e x  

Example 3:   

x 

        Y’’ = x + (1-  )y  

5 

          Y(1) = 2  

          Y (3) = -1  

Solution as given by shooting method has been taken for computing errors in the solutions by 

FDM and FEM.  

  

 SOLUTION of y’’=y   y(0) = 1   y(2) = 7.389  

BY SHOOTING METHOD  
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X  Y  Exact SOL  ERROR  

0.2000  1.22146  1.22140  0.00006  

0.40000  1.22146  1.49182  0.00010  

0.60000  1.82226  1.82212  0.00014  

0.80000  2.22572  2.22554  0.00017  

1.00000  2.71848  2.71828  0.00019  

1.20000  3.32032  3.32012  0.00020  

1.40000  4.05538  4.05520  0.00018  

1.60000  4.95318  4.95303  0.00014  

1.80000  6.04972  6.04965  0.00007  

2.00000  7.38900  7.38906  0.00006  

 Y’’ = y   y(0)=1 y(2)=7.3890  

FINITE DIFFERENCE METHOD  

X  ACT. SOL  Y  ERROR  

0.00  

0.20  

0.40  

0.60  

0.80  

1.00  

1.20  

1.40  

1.00  

1.80  

1.00000  

1.22140  

1.49182  

1.82212  

2.22554  

2.71828  

3.32012  

4.05520  

4.95303  

6.04965  

1.00000  

1.22236  

1.49361  

1.82461  

2.22859  

2.72171  

3.32371  

4.05865  

4.95594  

6.05146  

0.00000  

0.00096  

0.00179  

0.00249  

0.00305  

0.00343  

0.00359  

0.00345  

0.00290  

0.00182  

  

To Solve y’’=y by FEM  

Y(0)=1  

Y(2)=7.38905.  

Y  X  
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0.89960  

0.83542  

1.29502  

1.80676  

2.39125  

3.07202  

3.87649  

4.83705  

5.99238  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

1.6  

1.8  

  

2y'2 

Solution of y'' = - y+  y( 1)  y(1)  0.324027 

y   

  

  

  

  

BY SHOOTING METHOD  

X  Y  EXACT SOL  ERROR  

-0.80000  

-0.60000  

-0.40000  

-0.20000  

0.00000  

0.20000  

0.40000  

0.60000  

0.80000  

1.00000  

0.41783  

0.49498  

0.52539  

0.58777  

0.59972  

0.58776  

0.55237  

0.49496  

0.41782  

0.32403  

0.37385  

0.42178  

0.46250  

0.49016  

0.50000  

0.49016  

0.46250  

0.42178  

0.37385  

0.32403  

0.04398  

0.07320  

0.08988  

0.09761  

0.09972  

0.09760  

0.08987  

0.07319  

0.4397  

0.00000  

  

  

To sole the equation by FEM  

2y'2 

 Y'' = - y+     y( 1)  y(1)  0.324027  

y 
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X  Y  

-0.8  

-0.6  

-0.4  

-0.2  

0.0  

0.2  

0.4  

0.6  

0.8  

0.3517  

0.3868  

0.4189  

0.4417  

0.4467  

0.4401  

0.4195  

0.3809  

0.3407  

  

  

 y”=y+2y’2/y      y(-1)=y(1)=0.324027  

  

  

  

  

  

  

Finite Difference Method  

  

X  ACT. SOL  Y  ERROR  

-1.00  

-8.00  

-0.60  

-0.40  

-0.20  

0.00  

0.20  

0.40  

0.60  

0.80  

0.32403  

0.37385  

0.42178  

0.46250  

0.49016  

0.50000  

0.49016  

0.46250  

0.42178  

0.37385  

0.32403  

0.41834  

0.49592  

0.55366  

0.58926  

0.60128  

0.58926  

0.55366  

0.49592  

0.41834  

0.00000  

0.04449  

0.07414  

0.09116  

0.09909  

0.10128  

0.09909  

0.09116  

0.07414  

0.04449  

  

  

SOLUTION OF y” = x+(1-x/5)y, y(1)=2, y(3)+-1  
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BY SHOOTING METHOD  

  

X  y  

1.20000  

1.40000  

1.60000  

1.80000  

2.00000  

2.20000  

2.40000  

2.60000  

2.80000  

3.00000  

  

1.35029  

0.79003  

0.30886  

-0.09964  

-0.43843  

-0.70753  

-0.90429  

-1.02369  

-1.05859  

-1.00000  

  

Y” = x+1(1-x/5)y         y(1) =2        y(3) = -1  

  

  

  

FINITE DIFFERENCE METHOD   

X  Y  

1.00  

1.20  

1.40  

1.60  

1.80  

2.00  

2.20  

2.40  

2.60  

2.80  

2.00000  

1.35133  

0.79175  

0.31097  

-0.09736  

-0.43617  

-0.70546  

-0.90254  

-1.02240  

-1.05789  

  

TO SOLVE THE EQUATION Y = X+ (1-X/5)Y  

        Y(1) = 2, Y(3)= - 1  
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BY FEM  

X  Y  

1.2  

1.4  

1.6  

1.8  

2.0  

2.2  

2.4  

2.6  

2.8  

1.2785  

0.7203  

0.2175  

-0.2691  

-0.3439  

-0.6359  

-0.8347  

-0.9613  

-1.008  

  

TABLES AND OBSERVATION  

 The following are the consolidated table showing the solutions of each example by three 

methods and errors are Y(computed)- Y(analytical solution).  

  

  

  

  

  

  

  

Example-1:    y” =y   given  y(0)=1 and y(2)=7.38905  

x  Analytical 

solution Y=ex  
 Error by  

Shooting method  

Error by FDM  Error by FEM  
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0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

1.6  

1.8  

2.0  

1.00000  

1.22140  

1.49182  

1.82212  

2022554  

2.71828  

3.32012  

4.05520  

4.95303  

6.04965  

7.38905  

0.00000  

0.00006  

0.00010  

0.00014  

0.00017  

0.00019  

0.00020  

0.00018  

0.00014  

0.00007  

0.00006  

0.00000  

0.00096  

0.00179  

0.00249  

0.00305  

0.00343  

0.00359  

0.00345  

0.00290  

0.00290  

0.00000  

0.0000  

0.32172  

0.65420  

0.52711  

0.41878  

0.32703  

0.24812  

0.17871  

0.1198  

0.05627  

0.00000  

  

Example-2:    y” = -y+ (2y’2/y)   given  y(-1)= y(1)=0324027  

x  Analytical 

solution  

Y=(ex +e-x)-1  

 Error by  

Shooting method  

Error by FDM  Error by FEM  

-1.0  

-0.8  

-0.6  

-0.4  

-0.2  

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

  

  

0.32403  

0.37385  

0.42178  

0.46250  

0.49016  

0.50000  

0.49016  

0.46250  

0.42178  

0.37385  

0.3240.  

  

0.00000  

0.04398  

0.07320  

0.08988  

0.09761  

0.09972  

0.09760  

0.08987  

0.07319  

0.04397  

0.00000  

  

  

0.00000  

0.04449  

0.07414  

0.09116  

0.09909  

0.10128  

0.09909  

0.09116  

0.07414  

0.04449  

0.00000  

  

0.0000  

0.02215  

0.03498  

0.04450  

0.04846  

0.05332  

0.05006  

0.04327  

0.04088  

0.03315  

0.00000  

  

  

  

  

  

  

Example-2:    y” = x+ (1-x/5)y   given  y(1)= 2  &  y(3)=-1  

x   Solution by SHM  Solution by  FDM  Solution by  FEM  
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1.0  

1.2  

1.4  

1.6  

1.8  

2.0  

2.2  

2.4  

2.6  

2.8  

3.0  

2.00000  

1.35029  

0.79003  

0.30886  

-0.09984  

-0.43843  

-0.70753  

-0.90429  

-1.02369  

-1.05859  

-1.00000  

2.00000  

1.35133  

0.79175  

0.31097  

-0.09736  

-0.43617  

-0.70546  

-0.90254  

-1.02240  

-1.05789 -

1.0000  

  

2.0000  

1.2785  

0.7203  

0.2175  

-0.2691  

-0.3439  

-0.6539  

-0.8347  

-0.9613  

-1.0080  

-1.0000  

  

The shooting method is often quite laborious. Especially with problem of fourth order and 

higher order equations, the necessity to assume two or more conditions at the starting point is 

slow and tedious. It involves some sort of risk of wasting time on making assumptions. The 

finite difference method can be considered as direct discretization of differential equations. In 

finite element methods difference equations using approximate methods have been generated 

with piece wise polynomial solution. The numerical solution by these methods in case of each 

example have been presented.   
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