International Journal of Research in Science Advanced Technology and Management Studies ISSN NO: 2249-3034

IMPLEMENTATION OF RUN-TIME RECONFIGURABLE

CONSTANT MULTIPLIERS FOR FPGAS

Dr.SAI
Department of ECE, MallaReddy College of Engineering, JNTUH, Hyderabad, India
Raydnoces 1 3india@gmail.com

Dr.ECCLESTON
Department of ECE, MallaReddy College of Engineering, JINTUH, Hyderabad, India
pvpathi@gmail.com

Dr.THOMAS FELDMAN
Department of ECE, MallaReddy College of Engineering, JNTUH, Hyderabad, India
Matamshival @gmail.com

PROF.MUSILEK
MallaReddy College of Engineering, JNTUH, Hyderabad, India
principal@mrce.in

Abstract

This work introduces a new heuristic to generate pipelined run-time reconfigurable constant multipliers for FP-GAs. It produces
results close to the optimum. It is based on an optimal algorithm which fuses already optimized pipelined constant multipliers generated
by an existing heuristic called RPAG. Switching between different single or multiple constant outputs is realized by the insertion of
multiplexers. The heuristic searches for solutions that result in minimal multiplexer over-head. Using the proposed heuristic reduces the
run-time of the fusion process, which raises the usability and application domain of the proposed method of run-time reconfiguration. An
extensive evaluation of the proposed method confirms a 9-26% FPGA resource reduction on average compared to previous work. For
reconfigurable multiple constant multiplication, resource savings of up to 75% can be shown compared to a standard generic LUT
multiplier. Two low level optimizations are presented, which further reduce resource consumption and are included into an automatic

VHDL code generation based on the FloPoCo library.

Keywords: Constant multiplier, runtime reconfiguration, FPGA

Volume X, Issue III, MARCH/2021

Page No : 23

mailto:Raydnoces13india@gmail.com
mailto:pvpathi@gmail.com
mailto:Matamshiva1@gmail.com
mailto:principal@mrce.in

International Journal of Research in Science Advanced Technology and Management Studies

1. INTRODUCT ION

The multiplication with constant coefficients is an essential
operation in digital signal processing. Initially one of the rea-sons
to put embedded multipliers or DSP blocks into the fabric of
field-programmable gate arrays (FPGAs) was to reduce the
performance gap between application specific integrated circuits
(ASICs) and FPGAs. Nevertheless, the price to pay for those
fixed coarse-grained blocks is their inflexibility in word size and
limited quantity. Limited quantity is particularly critical in
industrial applications, when cheaper and rather small FPGAs

with only few DSP blocks have to be chosen due to price pressure.

Thus, logic-based constant multiplication methods are needed.
Optimizing the implementation of this operation is well studied.
Switching between a given set of constants of such multipliers
during run-time instead of using larger generic multipliers is
important to realize hardware efficient run-time

adaptable filters [1], [2], [3], DCT and FFT implementations
[4] as well as multi-stage filters for decimation or interpolation
like polyphase FIR filters [5]. A reconfigurable constant
multiplier is a multiplication circuit in which the scaling constant
can be chosen from a limited predefined set of constants during
run-time. For the given application domains two to six of such
adjustable coefficient sets are common. The switching during
run-time is achieved by inserting multiplexers into several
constant multiplication circuits, to achieve a reuse of redundant
partial circuits and thus a reduction of required resources. The
problem is to find the best possible solution when inserting the
fusing multiplexers. In order to avoid large routing delays
pipelining

_l}

V<7 §y
- 1 B
<1y T ¥ yx4
239 _
A
~ 273
P Bl

«3

Fig. 1: Reconfigurable single constant multiplier which
can be switched between the constants 1912, 1111,
1331.

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

is used for high speed applications. In contrast to ASICs, this
is specifically advisable for FPGA designs [6], due to their
inherent performance disadvantage. An example for such a
pipelined reconfigurable constant multiplier which can be
switched between the constants 1912, 1111, 1331 can be
found in Fig. 1. Pipeline registers are inserted after each stage
which includes registers in the multiplexer stages. The wires
can be associated with a left shift and a sign. The value vector
noted besides each operation corresponds to the intermediate
or output factors for a specific multiplexer configuration. A
switchable adder/subtractor is depicted as an adder with an
additional sign vector input.

A common way to realize multiplier-less single and multiple
constant multiplication for fixed constants is using additions,
subtractions and bit shifts. In general, finding an optimal solution
for single constant multiplication (SCM) proved to be NP-
complete as shown by Cappello and Steiglitz [7], so optimal
solutions can only be found for limited constant bit widths.
Optimal SCM solutions for constants of up to 12 bit [8] were first
extended to constants of up to 19 bit [9] and further extended for
constants of up to 32 bit [10]. Moreover, there are good SCM
heuristics called RAG-n, BHM [11] and Hew [12] whose source
code as well as an online SCM generator are provided on the
SPIRAL project webpage [13]. When FPGAs are the target
technology, solutions which consider pipelining during
optimization have to be preferred to avoid large routing
delays [6]. The problem of finding solutions for pipelined adder
graphs (PAGs) for SCM as well as for multiple constant
multiplication (MCM), which can directly take advantage of
the registers provided in an FPGA’s basic logic element,
is solved by a heuristic called ~ RPAG [14]. This heuristic
was shown to outperform state-of-the-art MCM methods like
Hew [12] when these are optimally pipelined [15] and is thus be
used as base for the reconfigurable constant multiplication
shown in this work. The source code of this heuristic is also
available online [16].

Page No : 24

International Journal of Research in Science Advanced Technology and Management Studies

Finding the run-time reconfiguration of SCM and MCM adder
graphs is a generalization of the basic SCM/MCM prob-lem and
thus also NP-complete. However, solutions were pre-sented
which are able to find reconfigurable SCMs (RSCM). First of all
there are different solutions targeting ASICs, all focusing on
multiplexer-based reconfiguration. In the method of
Tummeltshammer et al. [17] several optimized SCM graphs are
fused by a recursive algorithm called DAG fusion. Two SCM
graphs are fused with minimal hardware effort by in-serting
multiplexers to switch between the different constants. Further
coefficients can be included by recursively adding the related
SCMs to the existing RSCM. Similarities between different
coefficients in the canonical signed digit (CSD) representation of
constants are exploited by Chen et al. [18] to realize RSCMs.
Identical patterns in the CSD representation of constants are
searched and fused using multiplexers to be able to switch
between the different shifts and interconnections to realize a
specific constant. Faust et al. [5] use an adder graph based
approach with special focus on minimal logic depth. In addition
to the methods described earlier, their algorithm does not only
provide solutions for RSCM but also for reconfigurable multiple
constant multiplication (RMCM). Such RMCM are also provided
by ORPHEUS [2] which is able to fuse MCM solutions provided
by Hew [12] with a heuristic. Alterative concepts to realize
RMCMs are evaluated during the algorithm run-time and the best
overall solution is selected. The presented algorithms for RSCM
and RMCM, respectively, do not consider pipelining or other
FPGA specific issues as their focus is on ASIC implementations.

There is an FPGA-specific algorithm called ReMB method [1]
which was further analyzed and extended in [19] by our group.
An RSCM is constructed from basic structures that fit into the
basic logic elements (BLE) of FPGAs. This procedure is limited
to small problem sizes due to a very high memory consumption
[19] and does not consider pipelining. As pipelined solutions are
required for high speed applications on FPGAs, there is an
optimal adder graph based algorithm for RSCM and RMCM with
focus on pipelined realizations proposed by our group [20]. The
idea of DAG fusion [17] is picked up as already optimized
pipelined adder graphs (PAGs) are fused. Instead of fusing only
two PAGs in one optimization run, all PAGs of the required
constants are considered in one single optimization run to
produce a better, multiplexer-aware pipelined realization.
However, the optimal approach can only be used for small
problems because of the complexity of a full search over all
possible fusing solutions. Hence, a good heuristic method is
required which provides solutions close to the optimum. This
heuristic is presented and analyzed in the following Section II.
Moreover, the proposed heuristic supports the use of PAGs
consisting of ternary adders [21], [22], [23], which turns out to
further improve the results. In Section III, some low level
optimizations are provided to exploit the FPGA resources in
the best possible way. The results and a comparison with
previous work and with the use of generic multipliers are
presented in Section IV. A conclusion is given in Section V.

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

II. THE PAG FUSION ALGORITHM
A. Pipelined Adder Graphs

The input to the algorithm are pipelined adder graphs
(PAGs) generated with the reduced pipelined adder graph
(RPAG) heuristic [14]. In general, the presented fusion is not
limited to RPAG generated circuits as pipelined MCM input.
However, RPAG was chosen as it proved to outperform state-
of-the-art MCM methods like Hew [12] when these are
optimally pipelined [15]. The results of RPAG are adder
graphs representing multiplier-less pipelined constant
multipliers us-ing additions, subtractions and bit-shifts only.
The main idea of multiplier-less multiplication as applied in
RPAG is to compose a constant multiplication of an addition
of shifted inputs. This is beneficial because a constant shift is
only a wire in hardware. All constants can be formally
represented as A-operation [12], which is defined as

1 sg | -r
Ag(u, v) = 2T u+ (-1) 222 (1)

with g = (1, I2, r, sg), where u and v are the input constants, /1, [2
and r are shift factors and the sign bit Esg{ 0, 1} de-notes whether
an addition or subtraction is performed. A mul-tiplication by 17
could for example be realized as an addition of the input with the
input left-shifted by 4 (multiplication by 16). This can be seen in
the leftmost example in Fig. 2. In the following subtractor, 17
times the input is subtracted from 256 times the input, which
corresponds to a constant multiplication by 239. Finally, this
intermediate result is left-shifted by three to get the final result of
1912 times the input. If the constant to multiply with is known in
advance, this kind of realization is much cheaper in terms of
resources than implementing a generic multiplier [15]. In order to
automatically generate such constant multipliers, RPAG is
backward-exploring reachable intermediate constants, called
predecessors by evaluating the A-operation. This leads to a step-
wise constant composition, starting with the required output
constants. The goal of the heuristic is to select predecessors which
result in the lowest number of intermediate constants in the
preceding stage and which reduce the adder depth. Two more
examples for such a circuit of a pipelined SCM realization can be
found in Fig. 2, which are used as running example. The stage s
denotes the pipeline depth of each realized constant.

B. Improved Pipelined Adder Graph Fusion

Just like RPAG, the proposed pipelined adder graph fusion
is backward-exploring. Starting with the constant mapping of
the output stage all PAGs are fused stage by stage. The basic
idea is to combine those intermediate values in the respective
preceding stage to share the same adder, which leads

Page No : 25

International Journal of Research in Science Advanced Technology and Management Studies

PO N oL hA W —

—_

stage
0

111X

Fig. 2: RPAG solutions for the constants 1912, 1111, 1331.

to a minimal overhead of possibly necessary multiplexers or
switchable adder/subtractors. To do so, all combinations of
intermediate values are evaluated and their costs are calculated
separately and stored in a cost matrix. Multiplexers can appear at
the inputs of the successive stage in the following cases:

1) input has a different shift value
2) input has a different source
3) bothof 1) and 2)

As described before, the target is to select the overall best
mapping M for the specific stage s. This selection will be the
source for the determination of the next preceding stage s —1.
The procedure is repeated until the input (stage 0) is reached.
A simplified pseudo-code of the generalized fusion process is
given in Listing 1. It assumes that the overall best solution and
costs are globally known. It is started with the constant
mapping M of the output stage, the preceding stage s, the
search width w (unlimited for the optimal search) and the
costs of the current path current cost, which is zero in the
beginning. Compared to the algorithm presented in [20] the
algorithm was generalized, such that it can be used both as
heuristic and in an optimal way. In contrast to an arbitrary
search through the whole search space, which was done in the
former version, the search is now improved and based on a
sorted cost matrix. More details on the search width are
provided in Section II-D.

Listing 1: Simplified overview of the main recursion of the
improved fusion algorithm with desired output mapping M of
current stage, preceding stage s, the search width w and cost
of the current path current cost.

Fuse (M,s,w,current cost)
if s > 0 a
C = evaluate fusion cost (M);
C = sort(C); B
if current cost+min(C)>=current best cost
return; -- subtree cut
else
for i = 0...w
if current cost+cost (C(i))>=current best cost
return; -- normal bé&b cut
else
M = mapping(C(i));
current_cost += cost(C(1));
Fuse (M,s-1,w,current_cost);
end if;
end for;
end if;
else
if current_cost < current best_cost
current best cost = current cost;
best_solution = current_solution;

end if

end If;

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

7

(b) Possible mappings for second preceding adder.

Fig. 3: All combinations of the adders in the second last stage
for the given output mapping and the given RPAG SCM
solutions in Fig. 2.

In the running example used here, the three SCM graphs
generated with RPAG (see Fig. 2) are fused starting with the
desired output mapping M = 1912;{ 1111; 1331} , meaning
that the resulting circuit can be switched between these three
values. This will be called an SCM circuit with three config-
urations in the following.

The enumeration of all adder combinations of the second
last stage consisting of{ 239} for the first,{ 19}{ ,273} for
the second and {239 } ,{ 273} for the third

SCM solution,

respectively, is given in Fig. 3. For the constant 1912 only one
adder is required in stage two, but two adders are required in the
other SCM circuits. This fact is considered by the insertion of a
don’t care ”—= ”. Due to a separate cost calculation for a specific
combination, some of the multiplexer inputs are unknown from a
local point of view. These are marked with a question mark. They
do not have any contribution to the currently considered adders’
multiplexer costs, which is a main advantage of the proposed
method as the costs for each combination can be calculated and
evaluated separately.

The cost evaluation is following the assumption that the
multiplexers will be realized as a cascade of 2:1 multiplexers.
Thus, N = 1 2:1 multiplexers are required to switch between
N configurations, which leads to a contribution of each used
multiplexer input of:

N-1
tMUx =

cos v (2)
As a zero input can be realized by resetting the succeeding
register, these inputs are not considered as multiplexer inputs,
as our implementation targets pipelined implementations. The
multiplexer cost for each mapping is stored in a multidimen-
sional cost matrix C (line 3 in Listing 1). The cost matrix for
the combinations of the current stage can be found in TABLE
I in a two dimensional representation. For example, the first
entry in the first row (1.33) corresponds to the leftmost
mapping in Fi%. 3 (a) in which two multiplexer inputs, each
with a costmux of are used.

3
To get a valid solution a selection of one mapping for
the first preceding adder in Fig. 3 (a) will directly force the

Page No : 26

International Journal of Research in Science Advanced Technology and Management Studies

TABLE I: Cost matrix for stage 2 fusion of the given example.

19,239 273,273 273,239 19,273
239 1.33 1.33 2 2
— 0.67 0.67 1.33 1.33
[CH|

239
19

- |2r3| | ks

1312

111

P33

i

Fig. 4: Result of combining 239,19,239 and- ,273,273 as
preceding adders.

selection of the corresponding mapping for the second adder
(Fig. 3 (b)) or reduces the selectable possibilities for other
adders in a more general case. This means each valid mapping
solution for a specific stage consists of selections with a
unique row and column index. Thus, finding the cheapest
mapping solution M for a specific stage reduces to finding the
valid solution with the lowest sum of costs. An example for
such a selection is given in Fig. 4. It corresponds to the
highlighted selection in TABLE 1 with a total cost
contribution of 1.33 + 0.67 = 2 2:1 multiplexers.

The cheapest solution for a specific stage is not necessarily
the best overall choice as it affects the costs in the preceding
stages. So, to find the optimal solution, a full search over all
possibilities is necessary. The search space can be illustrated
as a decision tree, which consists of the decision itself as node
and the cost of the decision as edge. An example for this can
be found in Fig. 5, which shows a decision tree representation
for the second stage fusion decisions of TABLE I.

Each branch of the tree is a valid mapping solution for the
specific stage which can be chosen as output mapping for the
preceding stage (line 12 in Listing 1). Each branch
corresponds to a recursive call of Fuse() in line 14 of Listing
1. Thus, to get the full search space, a different decision tree
for the preceding stage has to be added recursively for each
stage’s output mapping until the input stage is reached. As the
cost matrix C is sorted in line 4 of Listing 1 the algorithm
follows the best cost solutions first. In the case of equal cost
solutions, the first solution found with these costs, is chosen
as the cheapest one. The full decision tree for our example can
be found in Fig. 6 and can be generated by setting w to
<]

As shown in the complexity analysis in the next section,
the full search for the optimal solution can be very time
consuming for larger problems as the number of combinations
grows factorial with the number of adders Ks in one stage and
exponential with the number of configurations N . Neverthe-

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

next stage

20 20 33 33

Fig. 5: Part of the decision tree for the second stage fusion.

less, the memory consumption is moderate as for the presented
algorithm, as only the local environment has to be stored,
which is the currently optimized branch. Moreover, irrelevant
branches, which are too expensive anyway, can be pruned
whenever the currently best cost value is exceeded. This is
why the search is started with the locally best solution, which
already finds good solutions in the first iterations. It is
executed in a branch-and-bound way, which stops searching a
branch if the total costs exceed the current global minimum
costs. Besides the normal branch-and-bound method (cf.
Listing 1, line 9-10), denoted as cut in the decision tree in Fig.
7, an additional pruning criterion is added (cf. Listing 1, line
5-6). The sum of minimum values of each row in the cost table
is a lower bound of costs which can be added by the
considered stage. If this minimum added to the current costs is
larger than the global minimum, the whole subtree can be
pruned, denoted as stcut. The best resulting reconfigurable
single constant multiplier solution of the running example is
shown in Fig. 1. It corresponds to the leftmost branch in the
decision tree of Fig. 6 and Fig. 7.

C. Complexity Consideration: Analysis of the Search Space

As the presented optimal PAG Fusion algorithm has to
traverse the full search space, its complexity, i.e., the number
of possible solutions and branches to find them, is an
important issue.

1) Number of Solutions: One key measure is the number of
possible solutions to combine the adders in one stage. N
denotes the number of configurations while the number of
adders in the considered stage s of the input adder trees is K.
The total number of adder combinations which are possible is
(Ks!)N . As the arrangement of the combinations itself does
not matter, it can be ignored during the enumeration of
solutions. As there are Ks! ways to arrange the combinations,

Page No : 27

International Journal of Research in Science Advanced Technology and Management Studies

.6667

1.33333

ISSN NO: 2249-3034

b 33333

Fig. 6: Full decision tree for the example with costs for each decision, best total costs (light gray) and worse total costs (dark

gray).

the total number of solutions Ls for a specific stage’s s subtree
is
&Ky " N-1
Ls= S_)_ = (Ks')
Kl

(©)

In the example decision tree of Fig. 6, L1=L2=2 (1) - 4,
which corresponds to the gray nodes in each subtree, as we
have two nodes to fuse and three configurations in each stage.
2) Number of Decisions: In order to evaluate the run-time
of the algorithm the number of decisions D, which is equal
to the number of nodes in the decision tree, is important. This
number depends on the possible solutions Ms for the subtrees
and the possibilities to reach them. For one stage’s s subtree
the number of decisions is calculated as
Ks-1. 2ZN-1
:
il
SJEQ—‘i —x
J:

Ds=Ls 4

j=0
<e (Euler Number)
. . o (3-1)
In the example decision tree of Fig. 6, D1 = D2 = 4(1 +
(3-1)
1

) = 8, which corresponds to the white nodes for each
subtree. Note that, although the sum consists of a factorial and
an exponential part, it has an upper limit of e (Euler Number).

For the whole decision tree the total number of decisions

is the sum of decisions in each stage. This is the number of

Volume X, Issue III, MARCH/2021

This means for our running example that though we have only
16 possible solutions, 40 (= 8:1+8-4-1) decisions are required
to build them.

The equation for the total number of decisions (5) shows

that the search space to find the optimal solution grows

at least factorial with the number of adders per stage K
and exponential with the number of configurations NV, as

it contains a product term of the Ls (cf. (3)). For larger
benchmarks this is not applicable, not even when branch-and-
bound is applied. Therefore a heuristic is needed, to reduce
the considered search space.

D. PAG Fusion for Larger Problems

The presented PAG fusion approach is able to find valid
solutions for pipelined RSCM and RMCM adder graphs.
Finding the optimal solution can not be guaranteed for large

problems, which can lead to drastic time consumption. Thus,
a heuristic to find a close-to-optimal solution with controllable

time consumption is required. Finding a good heuristic is not
trivial, as it is not clear which strategy is appropriate for the
present search space. An analysis of the search space of PAG
fusion showed, that selecting branches with low costs in the
local decision phase, raises the likelihood to find optimal or

Close-to-optimal solutions. Thus, the heuristic presented here
Page No : 28

works by limiting the number of branches to the ones which

of the preceding stages) multiplied by the
number of subtree decisions:
s-1 i-1
D= Di Lj
i=1 j=1
i=1 j=1

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034
are most likely to be included in the
are the cheapest solutions in each seaircu uce stage. 1ue scaicu

(5) branches are limited by the so called search width wscarcn. The
value of wsearch specifies the number of additional branches

value of wsearch specifies the number of additional branches

Page No : 29

International Journal of Research in Science Advanced Technology and Management Studies

Fig. 7: Reduced search space of wsereh = 1 for the given
example

which are searched with the locally best solution. Thus, the
search strategy is a modified breadth-first search and is related to
the beam search strategy [24]. Within the meaning of this
definition the initial greedy search of the algorithm has a search
width of wsearch = 0. As described earlier in Section II-B the
decision for the next path to follow in the decision tree is made
by using a cost matrix for each considered subtree in each stage.
For the heuristic these cost matrices are sorted (cf. line 4 in
Listing 1), to be able to quickly access the wsearch + 1 best paths.
When a path is selected, this selection equals the desired output
mapping for the previous stage. For that previous stage the cost
matrix is evaluated in the same way. This provides a very plain
and fast method to reduce the search space. Note that the
described branch -and-bound cuts can also be applied within the
heuristic, which has the potential to further speed up the search.
Especially the subtree cut (stcut), which was already explained in
Section II-B is now very easy to perform due to the sorted use of
the cost matrix within the heuristic. An example for the search
space of wsearch = 1 can be found in Fig. 7. The branch-and-bound
cuts are denoted as cut, while the subtree cuts are denoted as
stcut. Only eight instead of 40 decisions are needed compared to
the full search for this rather small example to find a good —in
this case the best— solution. This heuristic provides an easy way
to directly control the run-time and offers the possibility to
realize larger switchable coefficient sets for single and multiple

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

constant multiplication.

E. Exploiting Ternary Adders

Adders with three inputs (ternary adders) can significantly
reduce the number of operations in a pipelined adder graph
generated by the RPAG heuristic [21] and thus, reduce the re-
quired hardware. Support for ternary adders is given in recent
Altera and Xilinx FPGAs, namely Arria I, 11, V, 10, Stratix II-V,
10 and Virtex 5-7 [22], [23]. That is why the fusion of such PAGs
using three-input adders was also integrated into PAG fusion,
taking the implementation available at OpenCores [25]. The
target is to reduce the number of operations and with it the
required multiplexer inputs. Instead of the two operations a + b
and a —b each adder in the adder graph is now able to implement
at+b+c—ab+c,a+-bcor—a-bc. The cost evaluation and
the decision for a specific stage’s mapping was adapted to this
circumstance. This includes an extension of the data structure to
provide nodes with three inputs. Special care has to be taken,
when nodes with two and nodes with three inputs are fused. Here
an addition with O has to be provided for the input, which is
unused in one circuit. This leads to an additional degree of
freedom, when selecting the node’s input mapping and evaluating
a mapping’s costs. Another extension had to be provided in the
fusion of subtractors. In the two-input adder case it is possible to
map all negative inputs to the same input resulting in a subtractor
instead of a switchable adder-subtractor. This is not always
possible in the three input adder case (a —b—c). However, the
swapping of inputs to get the best possible solution was adapted
for the ternary adder cases (¢ =b + ¢, @ + b —c), in which a
swapping can help to reduce the required resources. All these
adaptions are leading to a larger complexity for the consideration
of inputs in these steps. Nevertheless, the overall run-time is
supposed to be reduced, as the number of adders Ks per stage is
reduced due to the operation reduction shown by Kumm et al.
[21].

III. Low LEVEL OPTIMIZATIONS
A. Multiplexer Mapping

As multiplexers are used to switch between the different
constants, their mapping to the target FPGA should be as good
as possible. This can be achieved by using the explicit
resources provided in Xilinx Virtex 5-7 slices [26]. In the case
of the used Virtex 6 FPGA, our VHDL code generator
produces the optimal mapping using Primitives [27]. This
results in a resource optimized multiplexer implementation.
The gain of this implementation can be seen in Fig. 8, which
shows the LUT consumption of the mapping achieved by
Xilinx ISE 13.4 (gray) as well as the improved solution by
using Primitives and the resource optimal mapping [26] (black
when better, otherwise equal to ISE mapping). The operating
frequency is not shown, due to the fact that only one up to
three slices are required, which leads to frequency estimations
between 770 and 1.300 MHz, which is unrealistic for a final
design, as there should be more limiting parts elsewhere. In 16
of the 31 cases one LUT per bit can be saved. That is why the
inclusion of this mapping as operator into our FloPoCo-based
[28] VHDL generator is part of this work.

Page No : 30

International Journal of Research in Science Advanced Technology and Management Studies

= 10 _
B g | 7:==€‘;noun
o cee0
E 6 cose
~= o pi
4 SS9
o ceeo
o 209
0 4 8 12 16 20 24 28 32

1-Bit x:1 Multiplexer

Fig. 8: Required LUTs for 1-bit x:1 multiplexer. ISE solution
(gray) and improvement by Primitive usage [26] (black).

ay—1 by @ Iy tg Dy So. Sp

|

5

v v v v

SN=-1 51 S0

Fig. 9: Realization of switchable adder/subtractor on Xilinx
Virtex 5-7 slices

B. Switchable Adder Subtractor Mapping

The fusion of adders with subtractors leads to the re-quirement
of switchable adder/subtractors in which the input that is
subtracted can be either input ¢ or input b. The proposed
realization of the switchable adder/subtractors on Xilinx Virtex 5-
7 slices can be found in Fig. 9. The realization is done using a
single LUT to provide the correct carry input and the following
LUTs to provide an XOR of the inverted or non-inverted inputs,
which builds a full adder together with the slice’s carry logic. The
inputs are inverted when required by an additional XOR of each
input with the corresponding subtraction flag sa or sv. The
subtraction flag sa or alternatively s» has to be set to 1 if a or b,
respectively, should be subtracted. The case in which sa and sb
are both 1 is not supported by the given implementation. Using
the described switchable adder/subtractor together with the opti-
mized multiplexer implementation helps to further reduce the
required slice resources. In our experiments we observed cases, in
which the more general VHDL implementation needed more than
twice as many LUTs. So when a switchable adder subtractor is
required more than 50% of slice resources can be saved in the
best case with the proposed implementation.

IV. RESULTS

This section provides synthesis results to highlight the
advantages of the proposed method. For all experiments the
same VHDL code generator which is based on the FloPoCo
library [28] was used to create synthesizable VHDL code.
VHDL code was generated with identical settings and mapped
to a Virtex 6 FPGA (xc6vIx75t-2ff484-2) using Xilinx ISE

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

‘ o2, k3, O4, <> 5, + 6 switchable const.,

——————— opt. sol
140F == -
(-
120} <> () A\ !
P 0]
E QO 0 o
é 100}~ O £3—6—63]
E T .
g i 2<
g * 4 T N T TR TR R R
80| -
]
60— [| r | E3 E3 [} 3 I ra I £
0 1 2 4 816326412825651210242048

Search width

Fig. 10: Comparison of the required slices of the heuristic with
different search widths and optimal solution (dashed lines).

TABLE II: Comparison of the average run-time of the
heuristic to the optimal method and average area overhead of
the heuristic solution

run-time [s]

speedup area degradation
heur. w = 64 opt. [s] heuristic heuristic
2 conf. <0.001 <0.001 1.00 x 0.41%
3 conf. 0.00188 0.00190 1.01x 0.69%
4 conf. 0.9293 0.9355 1.01x 0.37%
5 conf. 2.51 120.52 4.80x 0.46%
6 conf. 14.16 1842.24 130.10x 0.96%

v13.4. The proposed algorithms’ input graphs to be fused were
created using the RPAG heuristic. The source code of RPAG
and of the proposed method is available online as open source
within the PAGSuite [16].

A. Quality of the Heuristic

In order to evaluate the quality of the heuristic, an SCM
benchmark for 2 to 14 configurations, each consisting of 100
constant sets using randomly generated constants uniformly

distributed between 1 and 21— 1 was created. In this ex-
periment, optimal solutions were generated to have a baseline
for the heuristic results. In addition to that, solutions using the
heuristic with different search widths for all benchmark sets
were generated. A direct comparison of the average slice
utilization of the optimal PAG fusion and the heuristic for
constant sets with 2 to 6 configurations can be found in Fig.
10. It shows the required slices for the different search widths
and the optimal solutions with dashed lines. It can be observed
that a search width of only 64 leads to solutions close to the
optimal solution for the RSCM benchmark sets with up to 6
configurations. The maximum operating frequency of all
solutions is distributed equally between 443 and 469 MHz.
The average run-time for a width of 64 in this experiment is
compared in TABLE II. It can be observed that a longer run-
time of the optimal algorithm leads to an increased speedup
for the heuristic. At the same time, the area degradation of the
heuristic is smaller than 1%. This encourages the use of the

Page No : 31

International Journal of Research in Science Advanced Technology and Management Studies

heuristic for larger numbers of outputs as required for RMCM
problems, which have a much larger complexity due to a
larger adder count per stage.

B. Comparison to DAG Fusion

This section shows a comparison of the proposed algo-rithm to
the DAG fusion algorithm [17] which also relies on the fusion of
adder graphs. The same benchmark as for the heuristic
classification was used. Using this benchmark pipelined adder
graphs with the proposed PAG fusion heuristic as well as
pipelined and non-pipelined adder graphs with DAG fusion using
the available SPIRAL source code [13] were generated. The
pipelined DAG fusion results were obtained by inserting registers
after each adder, subtractor, adder/-subtractor, multiplexer and
corresponding pipeline balancing registers. Pipelined results for
DAG fusion are needed for a fair comparison of the slice
utilization and performance evaluation. The proposed algorithm
was executed with a search width of 64 as motivated in the last
section. DAG fusion was executed with a restricted mode
provided in the DAG fusion code when the run-time exceeded 3
hours (typically needed for cases with more than 9
configurations). The results for the required slices after place and
route and the maximum clock frequency can be found in Fig. 11.

Note that each data point is an average value of 100 constant sets.

As a baseline, a 16x 16 bit CoreGen

[29] soft-core multiplier (LUT-based implementation) with the
same pipeline depth as our solutions together with distributed
RAM to store the coefficients is shown in Fig. 11. For the
pipelined implementations it can be observed that the proposed
algorithm has a lower slice utilization than DAG fusion in
all cases. Compared to DAG fusion, the proposed method
provides a slice reduction of 9% on average when 2-input
adders are considered and 26% on average when ternary adders
are considered. The resulting 2-input adder circuits can be
run at nearly the same maximum clock frequency as the
pipelined DAG fusion circuits and the CoreGen reference.
Due to pipelining, the proposed method and pipelined DAG
fusion have a similar critical path, which can be found in the
adders or in the multiplexers with varying size. For the ternary
adders there is a performance degradation of about 39% on
average which was also reported by Kumm et al. [21]. The
non-pipelined DAG fusion results are in some cases better
than the pipelined 2-input and ternary adder results, but the
maximum clock frequency is up to 5 times slower. This clearly
shows the necessity of pipelining on FPGAs. The comparison
between the DAG fusion results and the results of the proposed
method also show that an optimization which considers all
configurations in a single run leads to better results. In general,
it can be seen that the proposed method is valuable for up to
four configurations in the 2-input adder case and up to six
configurations in the ternary adder case, when the required
slices are considered. For more configurations, the soft-core
multiplier implementation by CoreGen provides the solution
which requires the least resources. For ASICs, DAG fusion
proved to be valuable for up to 19 coefficient RSCM (cf.
Table I1 in [17]). This appears to be a maximum gap between
the optimized adder implementation and a generic multiplier.

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

250 —
*
% * o
200 |- s % X5
¥ X
| (ON Q)]
w«TOolo®
@ - 0
3 150 - 2 o
E sk O 6
2 0 6
) O X
8! é O 1 PAG fusion pip. (prop.)
i é (O PAG fusion pip. ternary (prop.)
0 9 >k DAG fusion pip.
» DAG fusion not pip.
777777 CoreGen mult + BRAM
| | _ |

00 2 4 6 8 10 12 14 16

Number of configurations with 16-Bit constants

500
. BT
T W ==
S 400 H
g
oy (@)
2 a0 ©C0oopopo0o00®
o
&
E 200 X
5 X 5
g XXXX
E 100 XX X X X %
>
<
=
| | | | | | | |
0 2 4 6 8 10 12 14 16

Number of configurations with 16-Bit constants

Fig. 11: Comparison of the required slices (top) and the
maximum clock frequency (bottom) for the proposed method
and DAG fusion [17].

This has to be of course smaller for FPGAs. For this small
gap, which is a relevant field for many applications, the pro-
posed heuristic can generate solutions with significantly lower
resource consumption and similar performance. When only
RSCM is considered, optimal solutions are possible, when
about half an hour of run-time is feasible. But the heuristic is
unconditionally required to enable shift-add-based reconfig-
urable multiple constant multiplication, especially with many
outputs, which is required, e.g., for run-time reconfigurable
FIR filters.

C. Reconfigurable Multiple Constant Multiplication

When reconfigurable multiple constant multiplication is
considered, it can again be compared to the CoreGen soft-core
multiplier with RAM for the coefficients. To have more than
one output, multiple CoreGen multipliers and coefficient
RAMs are used. A benchmark for 5 different MCM cases (2,
4, 6, 8 and 10 outputs), each with 2, 4, 6, 8 and 10
configurations, consisting of 50 constant sets per case using
randognéy generated constants uniformly distributed between 1

and 2 —1 was created. The search width was again set to 64.
The results of the 2-input and 3-input adder implementations
compared to CoreGen multipliers can be found in Fig. 12.

It can be seen that the CoreGen soft-core multiplier imple-
mentation is better for 6 or more configurations in the 2-input

Page No : 32

International Journal of Research in Science Advanced Technology and Management Studies

1 PAG fusion pipel. (prop.)
(O PAG fusion pipel. ternary (prop.)
CoreGen mult + BRAM

400

2 outp ut RMCM 0 d
300 ' O

2001~
& o
2

o

100/

8004 output RMCM O

600 m @)

400~ e

200 @; 8

e]=i

1,200
1,000
800
600
400

200

slices

outp ut RMCM

5 0
2 4 6 8 10

Require
d

e
o
©

TT T I

1,200
1,000
800
600
400
200

outp ut RMCM

[T T 1] Teol!

(1)
o Gl

1,200

1,00
800
600
400
200

LT
D
:
ol
£
3
=

Number of configurations with 16 bit constants

Fig. 12: Comparison of RMCM and tRMCM to a CoreGen
soft-core multiplier + RAM

adder case and 8 or more configurations in the ternary adder
case. Below these numbers of configurations, up to 75% of
the resources can be saved, when the proposed reconfigurable
shift and add based implementation is preferred, which is up
to 750 slices in the 10 output RMCM case. Note that without
the heuristic only the results for 2 outputs and 2
configurations could have been generated optimally within a
run-time limit of 3 hours. MCM solutions normally have more
adders in each stage, which leads to a much larger search
space and thus a much larger run-time. Using the heuristic
with its controllable search width, raises the solvable problem
size and thereby enables the application domain of RMCM for
the proposed fusion algorithm. For the application domains
given in the introduction [1], [2], [3], [4], [5], 2 to 6 MCM
configurations are common, which is the range of the
proposed heuristic. Up to 75% of slice resources can be saved
compared to a generic multiplier.

D. Comparison to Other Reconfiguration Approaches

If the presented multiplexer-based switchable multiple con-
stant multiplication is compared in the context of reconfig-
urable circuits, the reconfiguration time is an important factor.
The presented approach has a reconfiguration time of only one
clock cycle which is about 2-3 ns for the mapped and routed

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

designs. To compare our method to other reconfiguration
approaches, a 41 tap benchmark FIR filter (MIRZAEI10 41_
[30]) was used. This benchmark was already used in prior
work [31], to compare internal configuration access port
(ICAP) reconfiguration of Xilinx FPGAs and two logic based
reconfiguration approaches. In the benchmark the original
filter was extended to a run-time reconfigurable FIR filter by
designing additional different FIR filters with the same length
as the original benchmark filter and an input word size of 16
bit. These were optimized by using RPAG [14] and can be
reconfigured via ICAP. Alternatively, the benchmark set was
realized using the two logic based reconfiguration approaches
(FIR DA and FIR LUT). In the FIR DA approach the FIR
filters were realized using Distributed Arithmetic [32] with a
LUT-based implementation and were made reconfigurable by
using run-time configurable 5-input LUTs in Xilinx Vir-tex
FPGAs. The FIR LUT approach is based on the KCM method
[33], in which a constant multiplier is built by several smaller
LUT multipliers, whose shifted outputs are finally added.
Reconfiguration was again achieved by using run-time
configurable 5-input LUTs in Xilinx Virtex FPGAs. These
have a configuration time of 32 clock cycles, leading to a
reconfiguration time of about 61 to 66 ns in the analyzed
filters. The presented PAG fusion heuristic can be used to
generate the multiplication of switchable filter coefficients
(RMCM) with the input of a transposed FIR filter, which are
then followed by structural adders. The results for the previous
work and results for PAG fusion RMCM FIR filters for 2 to 5
configurations (conf.) are listed in TABLE III. In this case the
number of configurations corresponds to the number of
different FIR filter coefficient sets. The ICAP resource
consumption and maximum clock frequency are noted as a
range as the applied RPAG optimization heavily depends on
the numeric coefficient values. In addition, a FIR filter using
CoreGen multipliers together with RAM was evaluated. It can
be seen that the resulting circuits of the proposed method
provide the fastest reconfiguration time with a better resource
consumption for 2 to 4 configurations. The large increase in
slices from 4 to 5 configurations can be directly traced back to
the increase of LUT costs for the 5-input multiplexers (cf. Fig.
8). For 5 to 10 configurations it depends on the required
reconfiguration time, if the reconfigurable FIR filter using
distributed arithmetic or LUT multipliers together with
reconfigurable LUTs or the ICAP implementation should be
used. An implementation with CoreGen multipliers is only
valuable when very fast reconfiguration times and at the same
time a large number of configurations are required.

E. DSP Block Usage Considerations

On modern FPGAs, DSP blocks in combination with RAM for
the coefficients can be used instead of the proposed run-time
reconfigurable constant multiplication. If limited quantity of DSP
blocks is not a problem, each of the 16 x16 bit multipli-ers of
reported cases could be replaced by one DSP block and two slices
for the coefficient RAM. For multiplication word sizes larger than
18 Bit, more than one DSP block would be required for Xilinx
FPGAs. A comparison of the usage

Page No : 33

International Journal of Research in Science Advanced Technology and Management Studies

TABLE III: Comparison of a single filter MIRZAEI10 41 with Bx
= 16 bit using ICAP reconfiguration, CFGLUT methods, the
proposed PAG Fusion heuristic and CoreGen mutlipliers.

Method S [bit] Slices felk [MHz] Trec [ns]
RPAG [34] with ICAP 746496 502...569 386.7...448.8 233280
Reconf. FIR DA [35] 1920 1071 521.9 61.3
Reconf. FIR LUT [31] 14784 1108 487.8 65.6
PAG Fusion (2 conf.) 0 848 401.3 25
PAG Fusion (3 conf.) 0 911 372.2 2.7
PAG Fusion (4 conf.) 0 968 402.7 25
PAG Fusion (5 conf.) 0 1590 340.0 2.9
CoreGen mult 3360 2647 343.9 29

of DSP blocks to the proposed slice based method can be done
by relating the two types of resources (DSP blocks and slices)
according to their relative availability, referencing their
utilization ratio [15]. Alternatively, the chip area consumed by
the resources can be related [36]. However, neither of the two
methods addresses the frequent requirement to select the
smallest, hence cheapest, possible FPGA the design fits into.
Usually, in a complete design other parts are competing for
DSP resources in digital signal processing applications [37],
[38]. For such cases a trade-off must be available. This is
provided by the proposed slice based run-time reconfigurable
constant multiplier implementation.

V. CONCLUSION

This work presented a new heuristic to generate pipelined
run-time reconfigurable constant multipliers based on an op-
timal algorithm. The heuristic was motivated by a complexity
consideration of the search space. With the heuristic problems
with a larger size become solvable. An extensive benchmark
evaluation showed superiority over previous work, as we
could show a 9-26% slice reduction on average. Additional
extensions to the algorithm were presented which further
reduce the slice consumption of the resulting solutions. These
were the support of ternary adders, and optimized multiplexer
and switchable adder/subtractor mapping. Finally it could be
shown by RMCM and FIR filter experiments that the heuris-
tic is raising the solvable problem size and the application
domain of the proposed fusion method. Compared to other
reconfiguration approaches our method provides the fastest
reconfiguration time with a low resource consumption for a
limited number of configurations. The source code of the
proposed method is available online as open source within the
PAGSuite project [16] to increase reproducibility and provide
it for future research.

ACKNOWLEDGEMENT

The authors would like to acknowledge the work of Dipl.-
Math. Evelyn Lerche from the University of Kassel who
provided some nice hints for the complexity considerations.

REFERENCES

[11 S. S. Demirsoy, I. Kale, and A. G. Dempster, “Reconfigurable
Multiplier Blocks: Structures, Algorithm and Applications,” Circuits,
Systems and Signal Processing, vol. 26, no. 6, pp. 793-827, 2007.

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

[2] L. Aksoy, P. Flores, and J. Monteiro, “Multiplierless Design of Folded
DSP Blocks,” ACM Transactions on Design Automation of Electronic
Systems, vol. 20, no. 1, pp. 1-24, Nov. 2014.

[3] P. Lowenborg and H. Johansson, “Minimax Design of Adjustable-
Bandwidth Linear-Phase FIR Filters,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 53, no. 2, 2006.

[4] M. Garrido, F. Qureshi, and O. Gustafsson, “Low-Complexity Multipli-

erless Constant Rotators Based on Combined Coefficient Selection and
Shift-and-Add Implementation (CCSSI),” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 7, pp. 2002-2012, July 2014.
[5] M. Faust, O. Gustafsson, and C.-H. Chang, “Reconfigurable Multiple
Constant Multiplication Using Minimum Adder Depth,” in Signals, Sys-tems
and Computers, Conference Record of the Forty Fourth Asilomar
Conference on, Nov 2010, pp. 1297-1301.
[6] U. Meyer-Baese, J. Chen, C. H. Chang, and A. G. Dempster, “A
Comparison of Pipelined RAG-n and DA FPGA-based Multiplierless

Filters,” in APCCAS 2006 - 2006 IEEE Asia Pacific Conference on
Circuits and Systems, Dec 2006, pp. 1555-1558.

[7]1 P. R. Cappello and K. Steiglitz, “Some Complexity Issues in Digital
Signal Processing,” Acoustics, vol. 32, no. 5, pp. 1037-1041, Oct. 1984.

[8] A. G. Dempster and M. D. Macleod, “Constant Integer Multiplication
Using Minimum Adders,” Circuits, Devices and Systems, IEE Proceed-
ings, vol. 141, no. 5, pp. 407-413, Oct 1994.

[9] O. Gustafsson, A. G. Dempster, and L. Wanhammar, “Extended Results
for Minimum-Adder Constant Integer Multipliers,” in Circuits and
Systems (ISCAS). IEEE International Symposium on, vol. 1, 2002, pp. I-
73-1-76.

[10] J. Thong and N. Nicolici, “A Novel Optimal Single Constant Multi-
plication Algorithm,” in Design Automation Conference (DAC), 47th
ACM/IEEE, June 2010, pp. 613-616.

[11] D. R. Bull and D. H. Horrocks, “Primitive Operator Digital Filters,”
Circuits, Devices and Systems, IEE Proceedings, vol. 138, no. 3, pp.
401-412, Jun 1991.

[12] Y. Voronenko and M. Puschel, “Multiplierless Multiple Constant Multi-
plication,” Transactions on Algorithms (TALG), vol. 3, no. 2, May 2007.

[13] SPIRAL-Project. (2016) http://www.spiral.net.

[14] M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined Adder Graph
Optimization for High Speed Multiple Constant Multiplication,” in
Circuits and Systems ISCAS, IEEE International Symposium on, May
2012, pp. 49-52.

[15] M. Kumm, “Multiple Constant Multiplication Optimizations for Field
Programmable Gate Arrays,” Ph.D. thesis, University of Kassel,
Springer, 2016.

[16] PAGSuite Project Website. (2016) http://www.uni-kassel.de/go/pagsuite.

[17] P. Tummeltshammer, J. C. Hoe, and M. Puschel, “Time-Multiplexed
Multiple-Constant ~ Multiplication,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 9,
pp. 1551- 1563, Sept 2007.

[18] J. Chen and C. H. Chang, “High-Level Synthesis Algorithm for the
Design of Reconfigurable Constant Multiplier,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol.
28, no. 12, pp. 1844-1856, Dec 2009.

[19] K. Mo™ ller, M. Kumm, B. Barschtipan, and P. Zipf, “Dynamically
Reconfigurable Constant Multiplication on FPGAs,” in Workshop Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen (MBMYV), 2014, pp. 159-169.

[20] K. Mo™ ller, M. Kumm, M. Kleinlein, and P. Zipf, “Pipelined Reconfig-
urable Multiplication with Constants on FPGAs,” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, 2014, pp. 1-6.

[21] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U. Meyer-Baese,
“Multiple Constant Multiplication with Ternary Adders,” in Field Pro-
grammable Logic and Applications (FPL), 23rd International Confer-
ence on, Sept 2013, pp. 1-8.

[22] G. Baeckler, M. Langhammer, J. Schleicher, and R. Yuan, “Logic Cell
Supporting Addition of Three Binary Words,” US Patent No 7565388,
Altera Coop., 2009.

[23] J. M. Simkins and B. D. Philofsky, “Structures and Methods for Imple-
menting Ternary Adders/Subtractors in Programmable Logic Devices,”
US Patent No 7274211, Xilinx Inc., Mar. 2006.

[24] D.R.Reddy, “Speech Understanding Systems: A Summary of Results
of the Five-Year Research Effort. Department of Computer Science,”
1977.

[25] OpenCores. (2016) http://opencores.org/project,ternary adder.

[26] K. Chapman, “Multiplexer Design Techniques for Datapath Perfor-
mance with Minimized Routing Resources,” Application Note: Spartan-
6, Virtex-6 Family, 7 Series FPGASs, Xilinx Inc., 2014.

Page No : 34

http://www.spiral.net/
http://www.uni-kassel.de/go/pagsuite
http://opencores.org/project%2Cternary

International Journal of Research in Science Advanced Technology and Management Studies

—_
[\
~

—

[34]

[35]

[36]

[37]

[38]

Virtex-6 FPGA Configurable Logic Block User Guide UG364 (v1.2),
Xilinx Inc., 2012.

F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18-27,2012.

Xilinx Inc., LogiCORE IP Multiplier vii.2, DS255,2011.

] FIRsuite. (2016) http://www.firsuite.net.

M. Kumm, K. Mo ller, and P. Zipf, “Dynamically Reconfigurable FIR
Filter Architectures with Fast Reconfiguration,” Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 8th International
Workshop on, pp. 1-8, 2013.

A. Croisier, D. Esteban, M. Levilion, and V. Rizo, “Digital Filter for
PCM Encoded Signals,” U.S. Patent No. 3.777.130, 1973.

K. Chapman, “Constant Coefficient Multipliers for the XC4000E,”
Xilinx Application Note, 1996.

M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined Adder Graph
Optimization for High Speed Multiple Constant Multiplication,” in /EEE Int.
Symposium on Circuits and Systems (ISCAS), 2012, pp. 49-52.

M. Kumm, K. Mo™ ller, and P. Zipf, “Reconfigurable FIR Filter Using
Distributed Arithmetic on FPGAs,” in IEEE International Symposium
on Circuits and Systems (ISCAS), 2013, pp. 2058-2061.

M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert,
“Architectural ~ Modifications to Enhance the Floating-Point
Performance of FPGAs,” Very Large Scale Integration (VLSI) Systems,
IEEE Trans-actions on, vol. 16, no. 2, pp. 177-187, 2008.

T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, “Low-Power Cor-
relation for IEEE 802.16 OFDM Synchronization on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 8, pp. 1549-1553, Aug 2013.

F. de Dinechin and B. Pasca, “Large Multipliers with Fewer DSP
Blocks,” in 2009 International Conference on Field Programmable
Logic and Applications, Aug 2009, pp. 250-255.

Volume X, Issue III, MARCH/2021

ISSN NO: 2249-3034

Page No : 35

http://www.firsuite.net/

	International Journal of Research in Science Advan
	ISSN NO : 2459-425X
	Volume X, Issue III, MARCH/2021
	Page No : 28
	ISSN NO : 2459-425X

