
International Journal of Research in Science Advanced Technology and Management Studies ISSN NO :2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 192

Artificial Intelligence Assisted Computer
Troubleshooting

Dr.ECCLESTON

Computer Engineering
VIT Pune
Pune, India

amruta.bhawarthi@vit.edu

VedangMahajan
Artificial Intelligence and Data Science

VIT Pune
Pune, India

vedang.mahajan23@vit.edu

Piyush Male
Computer Engineering

VIT Pune
Pune, India

piyush.male232@vit.edu

Dr.SAI
Computer Engineering

VIT Pune
Pune, India

rajesh.mahajan232@vit.edu

Aarya Makanikar
Information Technology

VIT Pune
Pune, India

aarya.makanikar23@vit.edu

Rushikesh Malegave
Computer Engineering

VIT Pune
Pune, India

rushikesh.malegave23@vit.edu

Dr.HENRY
Computer Science(Artificial Intelligence)

VIT Pune
Pune, India

dhaval.gujar23@vit.edu

Vedant Mahale
Computer Engineering

VIT Pune
Pune, India

vedant.mahalle231@vit.edu

Abstract — Computers are fickle things. Even with the
enormous amounts of fail saves implemented in today’s
computers, there is no knowing when an unexpected problem
might occur on your device. Traditional troubleshooting often
requires considerable manual efforts and extensive
knowledge, thus leads to large resolution times and a hefty
operational cost. This calls for a need of an easy-to-use, easy-
to-understand method which can give solutions to everyday
problems which arise when using a computer. We aim to
provide a solution to this problem via an AI-assisted
troubleshooting framework that uses a comprehensive
knowledge base and real-time data analysis to provide
accurate and efficient solutions in a user-friendly way. This
study highlights the transformative potential of AI in
computer support and makes way for future advancements in
automated technical assistance.
Keywords — Artificial Intelligence, Large Language Model,
Ollama, GPT, troubleshooting, laptop repairs, data extraction,
service automation, machine learning

I. INTRODUCTION

Usage of AI has increased lately which has in turn increased
the productivity of many people in STEM. This has helped
people gain tons of knowledge and perform well. Artificial
intelligence has become an integral part of every individual's
life as it helps in giving best, proper solutions to every input
problem.

Laptop has been one of the best modes to achieve so. If these
laptops would face problems in working then definitely
solving it should be our utmost priority. For the same our AI
has been developed which gives proper solutions to any
prompt related to laptops faults. This helps user get a solution
in ease by simply inputting the problem. This AI system uses
LLM (large language model) and prompt template as well.
Whenever a user prompts a symptom then the same goes on
to the prompt template which makes the inputting user
prompt better thus increasing its effectiveness. It further goes
on to

LLM and creates an array of all possible problems that the
input has. Once a problem is selected then the AI would
search for the same in document search and would eventually
go to the LLM and finally give a proper solution.

In this context, proper working of a laptop is crucial. Even if
it faces any issue, addressing and executing the same is of
equal importance. Our AI system helps in achieving it all with
good performance, reduced errors, improved UI for a user-
friendly approach and great ease while using the AI system.

Moreover, fixing a laptop is a time-consuming process and
thus getting a solution at the very moment is of great ease and
our AI helps in achieving so.

II. LITERATURE REVIEW

i. “An Empirical Study of the Naïve Bayes Classifier”

a. The study examines the naive Bayes classifier using
Monte Carlo simulations. It finds that the classifier
works best when features are independent or
functionally dependent.

b. Despite its unrealistic assumptions, it remains
effective in practice. Further research is needed to
understand its performance with different data
characteristics

ii. “An Expert System for Laptop Fault Diagnostic
Assistance”

a. The paper introduces a laptop fault diagnosing
system where users can generate reports by
answering questions.

b. It aims to replace technicians to save costs and time,
focusing on accessibility and expanding the
knowledge base.

c. Based on user responses, the system generates a
diagnostic report identifying potential root problems
and recommending solutions.

ISSN NO: 2249-3034

mailto:amruta.bhawarthi@vit.edu
mailto:vedang.mahajan23@vit.edu
mailto:piyush.male232@vit.edu
mailto:rajesh.mahajan232@vit.edu
mailto:aarya.makanikar23@vit.edu
mailto:rushikesh.malegave23@vit.edu
mailto:dhaval.gujar23@vit.edu
mailto:vedant.mahalle231@vit.edu


International Journal of Research in Science Advanced Technology and Management Studies ISSN NO :2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 193

iii. “The great transformer: Examining the role of large
language models in the political economy of AI”

a. This paper delves into the impact of large language
models, particularly the Transformer architecture, in
AI.

b. It discusses their text generation capabilities and
associated concerns like automated content creation
and potential biases.

c. It suggests that more financial support should be
directed towards independent AI research to
promote the development of alternative techniques
and systems.

d. The paper highlights the impact of the transformer
architecture on the NLP landscape, emphasizing the
importance of scale and computing power.

iv. “Research on online fault detection tool of
substation equipment based on artificial
intelligence”

a. This paper incorporates the framework based on
artificial neural network methodology for fault
identification and analysis.

b. Enhances the accuracy of fault identification and
make the workstation fault free.

v. “Application of Large Language Models to Software
Engineering Tasks: Opportunities, Risks, and
Implications”

a. The article delves into the utility and risks of
employing large language models (LLMs) in
software engineering tasks, acknowledging
concerns over semantic accuracy and environmental
impact.

b. Emphasizing the importance of ethical
considerations, it advocates for educating future
software engineers on trust and improvement
strategies for AI-driven assistants.

vi. “Application of Large Language Models to Software
Engineering Tasks: Opportunities, Risks, and
Implications”

a. This research paper focuses more on exploration and
implementation of Turbo Prolog programming
language along with a few exceedingly exceptional
features of Object-Oriented based programming
approach.

b. It also proposes a decent way of having a huge
database management system. The rules proposed in
this paper are in an IF-ELSE format.

III. Methodology/Experimental

Our Artificial Intelligence (AI) Assisted Computer
Troubleshooting Tool leverages state-of-the-art AI
technologies to provide an automated and efficient solution
to diagnose and repair laptop issues. The tool's workflow
combines a large language model (LLM), natural language
processing (NLP) and data retrieval techniques to provide
simple and user-friendly troubleshooting.
We first started out building a very user-friendly interface
using Streamlit (it is an open-source Python framework for
data scientists and AI/ML engineers to deliver interactive data
apps – in only a few lines of code). Then the troubleshooting
process began with taking in user input. The user is prompted
to provide: the model of their laptop and a description of the
problem symptoms. This information is crucial as it allows
the system to provide the troubleshooting process for the
specific hardware and software configurations of the laptop
model in question.
For example, an Asus G15 2022 facing a dead screen may
enter “screen not working” as a symptom.

Once the user input is collected, the data is formatted into a
structure that can be efficiently processed by a large language
model (LLM). To achieve this, we utilize the Langchain
Framework of Python, which is designed for creating prompt
templates that facilitate the interaction between structured
data and language models. The Langchain prompt templates
are used to convert the user's laptop model and problem
symptoms into a query that can be understood and analyzed
by the LLM.
The formatted query is then fed into a large language model,
for that we tried using OpenAI's GPT-4 and Ollama. The
model by OpenAI was faster than Ollama by a small margin.
Still, we opted for using Ollama for our purpose as it was an
open-source model and is updated almost every 4-5 days on
the . The LLM analyzes the input to generate a list of potential
problems based on the provided symptoms. The model's
extensive training on diverse datasets enables it to infer
possible issues that might not be immediately apparent
through traditional troubleshooting methods.

The output from the LLM is an array of potential problems,
each represented as a clickable button within the tool's user
interface. The user is presented with these options and asked
to select the problem they believe is most likely to be the
cause of the issue. This interactive element ensures that the
user remains engaged in the troubleshooting process and
provides a level of control over the diagnosis. This also
accounts in the fact that an average person may not be able to
give a perfect description of the symptom and providing the
user with potential problems may offer some insights to push
the user in the right direction

After the user selects the most likely problem, the tool
proceeds with another prompt template from the Langchain
Framework which is employed to convert the selected
problem into a prompt for llm to give us a step-by-step guide.
The LLM processes this prompt to generate a detailed, easy-
to-follow solution that guides the user through each step
necessary to resolve the issue.

ISSN NO: 2249-3034



International Journal of Research in Science Advanced Technology and Management Studies ISSN NO :2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 194

The final step involves presenting the step-by-step solution to
the user through the tool's interface. The instructions are
designed to be clear and comprehensive, ensuring that users
of varying technical expertise can follow them effectively.
Our AI-assisted computer troubleshooting tool represents a
significant advancement in automated technical support. By
integrating user input, LLM analysis, and step-by-step
solution generation, the tool offers a robust and user-friendly
approach to laptop troubleshooting. This methodology not
only reduces downtime and operational costs but also
empowers users with the knowledge and tools needed to
resolve technical issues efficiently.

APPROACH:
In the initial phase of development, we employed the Naive
Bayes classifier, a straightforward probabilistic model
grounded in Bayes' theorem. This model operates on the
principle of conditional independence, assuming that the
presence of a particular feature in a class is unrelated to the
presence of any other feature. Despite its simplicity and
computational efficiency, the Naive Bayes classifier yielded
an accuracy of only 0.125. This subpar performance is
attributed to the small size of our dataset, which undermined
the model's ability to accurately capture the underlying
patterns and dependencies in the data.
Recognizing the limitations of the Naive Bayes approach, we
next explored Decision Trees and Random Forests. Decision
Trees segment the dataset into smaller subsets based on the
most significant predictor variables, creating a tree-like
model of decisions. Random Forests, an ensemble learning
method, combine multiple decision trees to enhance
predictive accuracy and mitigate overfitting. Despite their
robustness and interpretability, these models achieved an
accuracy of only 0.5517241379310345. While an
improvement over the Naive Bayes classifier, this accuracy
level remained insufficient for practical application, primarily
due to the limited dataset which restricted the depth and
diversity of the decision trees.

Given the inadequacies of traditional machine learning
models, we turned to Large Language Models (LLMs) which
use transformers for their advanced capabilities in handling
complex, context-rich data.
LLMs, such as OpenAI’s GPT-3, are pre-trained on extensive
datasets and employ sophisticated architectures like
transformers. These models excel in understanding and
generating human-like text, making them well-suited for
troubleshooting tasks that require nuanced comprehension
and contextual analysis. Unlike traditional models, LLMs can
leverage transfer learning, where the pre-trained model is
fine-tuned with a smaller dataset, thereby mitigating the
limitations imposed by data scarcity.

We initially integrated OpenAI’s LLM into our system,
recognizing its superior performance and reliability. The
model demonstrated a significant improvement in diagnostic
accuracy and response quality. However, the requirement for
constant internet connectivity to access the model, coupled
with the high operational costs, posed significant challenges.
These constraints limited its practicality for widespread
deployment, especially in environments with restricted
internet access or budgetary limitations.

To address the limitations of OpenAI’s LLM, we explored
Ollama’s LLM, which operates offline. This offline
capability was a critical factor in the decision of choice, as it
ensured uninterrupted functionality regardless of internet
availability and reduced ongoing operational costs.
The initial implementation of Ollama’s LLM presented
performance issues, notably slower response times, which
could detract from the user experience. To mitigate this, we
undertook extensive optimization efforts. These included:

 Model Pruning: Reducing the size of the model by
removing less critical parameters and layers, thereby
improving computational efficiency without
significantly sacrificing accuracy.

 Quantization: Converting the model weights to lower
precision formats, which decreased the memory footprint
and accelerated inference times.

 Parallel Processing: Using multi-threading and parallel
processing techniques to increase the model’s response
speed.

Through these optimization strategies, we successfully
reduced the latency and improved the runtime efficiency of
Ollama’s LLM, making it a viable solution for our AI-assisted
computer troubleshooting program.

Fig. Front end of the program

ISSN NO: 2249-3034



International Journal of Research in Science Advanced Technology and Management Studies ISSN NO :2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 195

CORE CODE:
import streamlit as st
from Chain import prompt_template_for_diagnosis,
prompt_template_for_solution,
prompt_template_for_solution2
import asyncio
from langchain_community.llms import Ollama
import re
from langchain.memory import
ConversationSummaryBufferMemory

async def chain(symptom, prompt):
llm = Ollama(model="llama3")
diagnosis_chain = prompt | llm
response1 = diagnosis_chain.invoke(symptom)
pattern = r'\[([^]]+)\]'
extracted_list = re.findall(pattern, response1)
extracted_list = [item.strip('\"\' ') for item in

extracted_list[0].split(',')]
return extracted_list

async def main():
if 'steps' not in st.session_state:
st.session_state.steps = []

if 'selected_problem' not in st.session_state:
st.session_state.selected_problem = None

st.write(st.session_state.symptom_list)

symptom_query_dict = {
"laptop_model": st.session_state.laptop_model,
"symptom": st.session_state.symptom_list

}
with st.form(key="problem_selection_form"):
st.session_state.selected_problem = st.selectbox(
"Please select a problem you wish to see the solution

to",
await chain(symptom_query_dict,

prompt_template_for_diagnosis.messages[0].prompt),
placeholder="Select problem...",
index=None

)
if st.form_submit_button("Run"):
query_dict = {
"laptop_model": st.session_state.laptop_model,
"problem": st.session_state.selected_problem

}
st.session_state.steps = await

chain(symptom=query_dict,
prompt=prompt_template_for_solution.messages[0].prompt)
for step in st.session_state.steps:
with st.form(key=step):
with st.popover(step):
if st.form_submit_button("Show Steps"):
query_dict2 = {
"laptop_model":

st.session_state.laptop_model,
"instruction": step,
"problem": st.session_state.selected_problem

IV. Results and Discussions

The objective to develop an AI-assisted computer
troubleshooting program is a massive one but today we are
capable of diagnosing and solving technical issues using this
approach. The research and development phase highlighted
the limitations of traditional machine learning models when
faced with small datasets and the superior capabilities of
LLMs in such contexts.

The transition from OpenAI’s LLM to Ollama’s offline
model, followed by targeted optimization efforts, enabled us
to develop a robust, efficient AI-assisted troubleshooting tool.
This phase underscored the importance of model selection
and optimization in the development of practical AI
applications.The end product also demonstrated just how
much of a help and time save it can be while also highlighting
the problems which may arising when using Artificial
Intelligence such a system.

As LLMs continue to evolve, they will become even more
adept at understanding nuanced technical issues, providing
more accurate and contextually relevant solutions. Future
advancements could see the integration of multimodal
capabilities, allowing the AI to interpret and diagnose issues
based on a combination of text, images, and perhaps even
video inputs. This would enable users to simply upload
screenshots or short videos of the problem, with the AI
providing detailed, step-by-step resolutions.

Moreover, the system could be improved with real-time
learning that will be able to adapt to new software updates
and emerging technologies ensuring that the troubleshooting
remains current and up-to-date. Additionally, the natural
language processing (NLP) could be enhanced for more
intuitive and human-like interactions, making the
troubleshooting process seamless and less frustrating for the
user. By employing advanced data analytics, the program
could identify recurring issues and trends, providing valuable
insights for better product development, ultimately reducing
downtime and pitfalls which could occur during
development.

In enterprise settings, integration with IT service management
(ITSM) tools could streamline support workflows,
automatically creating and updating tickets based on the AI's
analysis and recommendations. Lastly, the program could be
expanded to support multiple languages, making it accessible
to a global audience, hence removing a large barrier for
universal tech education.

}
st.write(await chain(symptom=query_dict2,

prompt=prompt_template_for_solution2.messages[0].promp
t))

if name == ' main ':
asyncio.run(main())

ISSN NO: 2249-3034



International Journal of Research in Science Advanced Technology and Management Studies ISSN NO :2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 196

V. Acknowledgment

We, the authors, would like to thank Vishwakarma Institute
of Technology (VIT), Pune for the gracious opportunity and
our project mentor, Mrs. Amruta A. Bhawarthi for her useful
insights and guidance throughout our project.

vii. References

[1] Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.

[2] Murphy, K. P. (2012). Machine Learning: A
Probabilistic Perspective. MIT Press.

[3] Vaswani, A., et al. (2017). "Attention is All You Need".
Advances in Neural Information Processing Systems,
30.

[4] Brown, T., et al. (2020). "Language Models are Few-
Shot Learners". arXiv preprint arXiv:2005.14165

ISSN NO: 2249-3034


