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Abstract:

The stability analysis of second-order differential equations, especially those with linear and
quadratic components, is the main topic of this study. Equations denoted by i = f(x), where f(x) may
contain only quadratic terms or both linear and quadratic terms, are the subject of this investigation.
Two fundamental theorems that define the necessary and sufficient conditions for both the overall
stability and the asymptotic stability of these systems are presented in this study. By examining the
dynamics of second-order linear and quadratic differential equations, this research significantly
advances our understanding of their stability properties and the implications they have for a variety
of applications.
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I. Introduction:
Though their heterogeneous structure defies a single all-encompassing explanation, the study of linear
systems is crucial for comprehending complex events. Specialized methods for examining particular
features of various linear system classifications have developed over time. An insightful approach to
investigating the stability properties of a particular class of second-order differential equations is shown
in this paper. By using this method, important information about the stability properties of these systems
may be obtained, which advances our comprehension of how they behave in diverse situations.
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Quadratic differential equations are more than simply a useful tool; they have a long history of use in
both general mathematics and the emerging field of systems theory. The dynamics of planar quadratic
systems have fascinated pure and applied mathematicians throughout history, leading to a number of
attempts to determine the number and distribution of limit cycles in these systems. Numerous
approaches to describing integral curves have resulted from these efforts, with thorough treatments
using a range of algebraic and analytical techniques appearing during the past 20 years. Coppel's brief
survey offers a useful summary of the development of this field over time. Beyond purely theoretical
interest, quadratic systems are useful in adaptive control situations where control parameters actively
interact with system states. Notably, bilinear system research has exploded in the control literature in
recent years, and the results have influenced nonlinear system research. In particular, the system
corresponds to a special example of quadratic differential equations when it is assumed that the control
input u(t) in the differential equation has linear dependency on the state variables, highlighting the
importance of stability assessments for control theorists.

�˙ = ��+���+��

II. Linear Second-Order Differential Equations
Components of second-order differential equations with variable coefficients are determined by a particular
variable. The schematic representation of a second-order linear differential equation:
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P, Q, and f represent functions of the independent variable x, respectively. Having constant coefficients, the
previously mentioned equation is classified as a second-order linear differential equation when P and Q are
constant quantities.

The equation is designated as a homogeneous linear differential equation of the second order if f = 0; otherwise,
it is considered non-homogeneous.

The application of linear second-order differential equations, which are fundamental to mathematics, spans
numerous disciplines such as economics, engineering, and physics. "Second-order" equations are those in which
the second derivative of an indeterminate function is utilized. They possess a standard form of:

Here, a, b, and c are constants, f(x) is a function of x, and y represents the unknown function of x that we aim to
solve for.

The most common linear second-order differential equation is the homogeneous equation,

where f(x)=0:

The solutions to this equation can be found using various methods, including the characteristic equation method,
which involves finding the roots of the associated characteristic polynomial:

Denoted as r1 and r2, the root values in this function ascertain the overall solution to the homogenous question.:

Where C1 and C2 are arbitrary constants that depend on the initial conditions of the problem.

In cases where f (x) is not equal to zero, we have a Equation of a nonhomogeneous linear delay of second order:

In order to determine the general solution to this equation, it is necessary to identify both the specific solution to
the non-homogeneous equation and the complementary function, which represents the solution to the associated
homogeneous equation. The overall solution may be expressed as[14]:

Where ycf (x) represents the complementary function and part (x) represents the particular solution.

Solving linear second-order differential equations is a common task in various scientific and engineering
disciplines. Depending on the specific problem and boundary or initial conditions, different techniques and
methods, such as variation of parameters, undetermined coefficients, or Laplace transforms, can be employed to
find solutions. These equations play a crucial role in modeling physical systems, such as oscillations, electrical
circuits, mechanical systems, and more. They provide a powerful mathematical framework for understanding and
predicting the behavior of these systems, making them a fundamental topic in the study of differential equations.
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III. HOMOGENEOUS SYTEMS OF EVEN DEGREE
Consider the dynamical system in ℝ�

�˙ =ℎ(�)

Let h denote an analytic function in which a unique solution exists with respect to every initial condition
x ε R^n. p(t; x), t ≥0, satisfying equation (4). Our presumption is h (0) = 0, as well as define the
subsequent terminology. The set��(�;�) is a trajectory of system (4)—a smooth curve inℝ�. The system
is termed stable if, for every c > 0, there exists a ð > 0 such that ‖�‖ < ð implies ‖�(�; �)‖ < �, for
all �cℝ+. An appealing aspect of the origin is its location in an expansive neighborhood. �ℒ, such that
for all � cℝ+and every c > 0, there exists a all � c ℝ+such that ‖�(�; �)‖ < �, for t > T. The set Ω is
termed the domain of attraction. System (4) is regarded as asymptotically stable if it is stable as well as
the origin is appealing. Moreover, when the system exhibits stability and all solutions are constrained,
it is considered to be stable in its entirety. Finally, an object or system is classified as asymptotically
stable in the large (ASL) if both its domain of attraction and asymptotically stable conditions extend
over its entire spaceℝ�.

If h is a homogeneous function, that is, ℎ(��) = �kℎ(�), �c�, �c�, The subsequent lemma then
provides a generally recognised and practical fact regarding the solutions to (4). Lemma 2.1: Let
( ; 0)be the solution of (4) wlth the initial condition (0, 0) = 0,. Then for all c ,

�(�; �0) = ��(�k−1�; �0)

Then

( ) = ( ; ) = k ( ; )
0 0

= ℎ(�)

Therefore, both u(s) and p (t: ßxo) satisfy condition (4) given that initial condition u (0) = ßxo; this
indicates that u(s) = p (t; ßxo). Assuming k is an even number, the field direction in system (4) remains
constant when traversing the origin in a straight line. As an immediate consequence of Lemma 2.1, the
following holds true: p (t; — xo) — p (— r, xo). Put differently, for t values less than zero, every
trajectory that passes through xo has a corresponding path through —xo, which serves as its reflection.
As illustrated in Figure l, this straightforward fact gives rise to the subsequent corollary. 2.1 Corollary:
For any given xo, the complete trajectory y(xo) = p (t; xo) lt e R) signifies a positive distance from the
origin when k is an even number and the origin remains stable. Assert that Il xo I = 0, while ensuring
that the positive trajectory remains unbounded from the origin. Then, a sequence tn > 0 is such that p
(tn; xo) is less than l/n. Xn xo) is defined as p tn; — xo from

Fig. l Reflection property of even homogeneous systems.
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The lemma 2.1. Therefore, I l x n I l < l/n implies I l p (t; — xn) ll < € and the origin is unstable for all
n values greater than zero. An analogous rationale can be extended to the negative trajectory. In general,
Corollary 2.1 asserts that it is impossible for an even-degree homogeneous dynamical system in R n to
achieve asymptotic stability. On the aircraft R 2, additional words may be spoken. Equation (l) serves
as a particular instance of (4) in R2, where k equals 2. In the remainder of this paper, (l) and (2) in R 2
will be examined. Lemma 2.2 posits that a closed path can only be formed by an equilibrium point or a
solution of system (1). This is an immediate consequence of the fact that any closed curve that is not
trivial will intersect at least two lines passing through the origin. The field would change direction along
this line if it followed a trajectory along this curve, which is in opposition to the even homogeneity
attribute of (1). 2.2 Consequence: For system (1) to have a stable origin, the field must cease to exist
along a minimum of one complete line passing through the origin.

Proof: Demonstrating the existence of an equilibrium state x_0 is adequate. The subsequent conclusion
is mandated by homogeneity. Consider the system to be in a stable state, and denote y ¦0 as a trajectory
of (l) that is contained within a compact neighborhood of 0. As deduced from Corollary 2.1, () (where
Y's closure is located). The Poincare—Bendixson theorem states that if -f—y is not an equilibrium
point, then either y is a limit cycle or its positive limit set is a limit cycle. Nevertheless, this rebuts
Lemma 2.2. Thus, xo—y represents a point of equilibrium, and B(xo) = 0. By homogeneity, since xo +
O, we have B(x) = 0 for all x = axo, where a σ R.

In accordance with the preceding corollary, the subsequent segment will analyze the existence of lines
along which the field in system (1) vanishes. This investigation will culminate in the development of
an innovative parameterization for stable quadratic systems. By employing this novel parameterization,
it is possible to define the stability behavior with respect to a matrix in R; this finding has far-reaching
implications that continue to resonate throughout the remainder of this research.

IV. SECOND-ORDERQAUDRATIC SYSTEMS
This section will dedicate its attention solely to the particular category of second-order systems of the
second degree, as denoted by equation (1):

�˙ = [�
���] ≜ �(�)

Without sacrificing generality, we presume that both H and G∌R^ (2) are symmetric and that at least
one of them is nonzero. It follows from Corollary 2.2 that the stability properties of (1) are essential to
the location of the set of critical points of B (x). System (1)'s characterization is determined exclusively
by the matrices G as well as H. By capitalising on the established characteristics of symmetric matrices,
the equilibrium states of (1) can be categorised according to the occurrence of field disappearance, as
elaborated upon subsequently:
1) Only at the origin,
2) in a straight line beginning at the origin,
3) in two linear segments traversing the point of origin
One might observe that systems of type 1) are inherently unstable as an immediate consequence of
Corollary 2.2. The quadratic forms are utilised in cases 2) and 3), and , in (1) possess an
identical real linear factor. As a consequence of these properties, the subsequent theorem constitutes the
primary finding of this section.
Theorem 1: System (l) possesses stability in the large only if a constant vector exists ceR 2 as well as a
real constant matrix De R 2 x 2with complex conjugate eigenvalues such that

B(x) = cTxDx.

The subsequent discourse is dedicated to providing the proof of Theorem l.
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A. Notation as well as Definitions

In light of the fact that subsequent discussions will heavily emphasize indefinite and semidefinite
matrices, it is advisable to establish the subsequent notational conventions concerning their geometric
as well as algebraic properties: Let as denote the symmetric part of A. The set {MIAs = Ms} denotes
the symmetric equivalence class of A. Clearly, = x TAx VxER 2 if and only if Me St A]. If A is
singular, then for some a, be R 2, for any PG S[A], x TP = O if x is orthogonal to either a or b. The class
ð(0) contains a matrix J with the property -I. J is the skew-symmetric matrix [0 −1]maps every

1 0
vector in R 2 into x ± =��, a vector in the orthogonal complement of x. From these definitions it follows
that l) ��� where the last symbol denotes the determinant of the array [y, x]. denote the subspace
defined by x ∈ R 2 as (x) {y I y = ax, ae R}, and its orthogonal complement as (x L ) = y {
Finally, if (xo) is a nonzero fixed direction of B(x)—i.e., 0 # xo + O—then (xo) + as
well as (xo) — [the positive as well as negative rays contained in the line (xo)] are said to be ray
solutions of system (l). It is worth noting in passing that a positive ray solution of (l) must have a
finite escape time—i.e., for some T < xo) = oo.

V. Quadratic Second-Order Differential Equations

Equation (1) demonstrates that a system of type 1, which was introduced in this section, is unstable. In
fact, ray solutions are required for such systems, as demonstrated in Equations (2), (6), and [lo]. Thus,
only systems of types 2) & 3) that have at least one line of equilibrium states traversing the origin are
required for consideration. The subsequent lemma offers a practical characterization of said systems.
Lemma 3.1: System (1) is type 2) or 3)) exclusively as well as if a certain c E R as well as DE Iw 2x2
such that B(x) = C'XDX. Proof: B(x) is type 2) or 3)
Lemma 3.1: System (l) is type 2) or 3) if as well as only if a certain amount of ce R 2 and De R such
that B(x) = c TxDx.

Proof: B(x) is type 2) or 3) exclusively if, for a certain

This lemma establishes a relationship between specific solutions of a nonlinear time-varying
system and those of a linear time-varying system, which is crucial. Since dx/dt = cTxDx, if ds/dt e
cTx, then

C. Necessary & Sufficient Conditions for Stability in the Large

For categories 2) as well as 3), it is possible to incorporate widely recognized Incorporating
attributes of planar linear systems into the Theorem's proof L by reparametrizing (l) as (5). The
catalogue of established integral curves of (5) for D that is not exactly 0 is illustrated in Figure 2.
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Fig. 2. Integral curves of planar linear systems

If system (l) is type 3)—i.e., when D is certain to be singular and possesses two distinct lines of
equilibria; furthermore, the system trajectories conform to the curves illustrated in Figure 2(e). In this
instance, D abT signifies (a) since b Ϧ(c); conversely, B(x) = 0 on (b L) and (c x). Lemma 2.1 states
that if (a) + (cm) and (a) + (bx), then (a) contains a positive ray solution of (l) [as illustrated in Figure.
3(a)l]. Lemma 2.1 states that in the case where (a) = (c L), any trajectory that is directed towards (bx)
will have a reflected trajectory that is directed away from (bx) [as illustrated in Figure. 3(b)].
Unbounded solutions of (l) exist for initial conditions arbitrarily near the origin in both scenarios;
consequently, the system lacks stability.

The quadratic formula:

=
−� ± √�2 − 4��

2

The quadratic equation is notable for being a polynomial equation of the second degree. This
categorization is predicated on the variable in the equation having a maximum power of two.
Consequently, the quadratic equation is distinguished from cubic equations (third-degree polynomial
equations) and linear equations (first-degree polynomial equations) by the inclusion of a cubed term. In
general, the categorization of the quadratic equation as a "univariate" equation emphasizes its
dependence on a solitary unknown variable, whereas its classification as a second-degree polynomial
equation accentuates its configuration comprising powers of x up to the second degree. Comprehending
the properties and characteristics of quadratic equations requires a comprehension of these attributes,
which renders them indispensable principles in the fields of algebra and mathematical analysis.

ISSN NO: 2249-3034



International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2459-425X

Volume XIII, Issue XI, NOVEMBER/2024 Page No : 104

Fig 3. Plots of quadratic function

Indeed, the aforementioned methodology can be readily implemented to derive the power series
corresponding to the tangent function. It is worth noting that if h(t) = f(t) /g(t), then

The power series coefficients of x are denoted by this recurrence relation. We emphasize that it is easy
to derive a simple recurrence such as the one described above by employing Cauchy products for power
series in systems of IV ODEs involving all quadratic polynomials. An illustration of this will be
provided in a subsequent section of the manuscript. The recurrence relation stated above indicates that

The quadratic equation ax2+bx+c = 0 can be classified into three primary categories of solutions based
on whether one, two, or zero real roots are present. When real roots are absent, the parabola denoted by
y = ax2 + bx + c is situated completely either above or below the x-axis. The solution to this ordinary
differential equation (ODE) exhibits a perpetual increase in the first scenario and a perennial decrease
in the second.

Case 1. No roots: x 0 = ax2 + bx + c = a ((x − r1) 2 + r 2 /2)

Since ax2+bx+c consists of the sum of two squares containing the real integers r1 and r2 (which
represent the real as well as imaginary components of the complex roots, respectively) and has no real
roots, r1 ± i r2 for ax2 + bx + c = 0) as the final equality for the aforementioned ODE demonstrates.
Integration is possible when the ODE is represented in this manner.

Case 2. One root: x 0 = ax2 + bx + c = a (x − r) 2

Since ax2 + bx + c has only one real root, or its expression is that of a flawless square. This ODE's
solution can be found as.
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Case 3. x 0 = ax2 + bx + c = a (x − r1) (x − r2)

Since ax2 + bx + c has two real roots, r1, r2 it can be factored into these roots. The solution for this ODE
is

where C is determined by the initial condition x (0) = x0 in all three cases.

We note that all solutions ’blow up in finite t’. That is, there is a real number t∗ so that lim t→t∗ x =
±∞. Since a finite radius of convergence characterizes the aforementioned power series for each of the
three cases' solutions.

If a = 0, b 6= 0, It is the ODE that was examined in the initial illustration. The initial two illustrations
demonstrate a significant alteration in the characteristics of the solutions to the ordinary differential
equation (ODE) when the right-hand side is transformed from a line (bx + c) to a quadratic polynomial.
(parabola ax2 + bx + c) no matter the magnitude

The equilibrium solutions for this ODE are x = 0 & x = β/ α. From the discussion

The stable equilibrium in this case is x = β/ α = 3 /4 representing a population of 750. The IV ODE is

Specifically, we are operating under the assumption that 125 species are present at the outset of this
population process. It is postulated that w = x0+ x1t is the solution to this problem. Then

The plot representing the quadratic solution approximation. This estimation immediately approaches
equilibrium 0.75 at t = h which the true solution cannot do. A graphical representation of the cubic
polynomial solution approximation. This plot oscillates similarly to the linear approximation and is less
precise than the quadratic polynomial. A graphical representation of the solution's quartic polynomial
approximation. This approximation rapidly surpasses the equilibrium and expands boundlessly. The
degree 8 polynomial approximation to the solution is depicted in the figure. It approaches the solution
0.75 smoothly.
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Fig 4 The linear approximation to the solution of the IV ODE

Linearity vs. Nonlinearity

Linear Second-Order Differential Equations: The defining characteristic of linear equations is that they
exhibit a linear relationship between the dependent variable y as well as its derivatives. In the case of
second-order linear differential equations, the highest power of the variable and its derivatives is one.
Mathematically, these equations can be expressed as

a 2 +b + = ( )
2

where a, b, as well as c are constants. Linearity ensures that the sum of any two solutions to the equation
is also a solution, and scaling the solutions by a constant produce another valid solution.

Quadratic Second-Order Differential Equations: Quadratic equations, on the other hand, introduce a
nonlinear term involving the square of the dependent variable or its derivatives. The general form

a 2 +b
2

( )2+ 2= ( )

where a, b, as well as c are constants. The nonlinearity in the quadratic term contributes to a
fundamentally different behavior compared to linear equations. Unlike linear equations, the sum of two
solutions is not necessarily a solution, and the principle of superposition may not hold.

VI. Comparison of Stability

A. Linear Equations and Stability Analysis

Linear equations are foundational in understanding the stability of dynamic systems, a concept
crucial in diverse scientific disciplines. Stability analysis in the context of linear equations
involves studying how solutions evolve over time and whether they approach equilibrium
points. Equilibrium points are states where the system remains unchanged, making them
essential for understanding the long-term behavior.

In linear systems, stability is often associated with the system matrix's eigenvalues. The system
is stable when every eigenvalue possesses negative real portions, and solutions tend to
converge to the equilibrium. This concept is a cornerstone in control theory, electrical
engineering, and physics, providing insights into the reliability and predictability of linear
systems.
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B. Quadratic Equations and Stability

Quadratic equations introduce a new layer of complexity to stability analysis. Unlike linear
equations where stability hinges on the signs of eigenvalues, quadratic equations may have
stable or unstable solutions depending on the coefficients and initial conditions. This added
complexity arises from the nonlinearity introduced by the squared terms in the equations.

The stability of quadratic solutions is closely tied to the discriminant of the characteristic
equation. For a quadratic equation ax2+bx+c=0, the discriminant Δ=b2−4ac plays a crucial role.
If Δ>0 the solutions are real and distinct, often leading to oscillatory behavior. When Δ=0, the
solutions are real and repeated, as well as the system may exhibit critical damping. If Δ<0, the
solutions are complex conjugates, indicating oscillations with an exponential decay or growth.

C. Stability Analysis Beyond Linear Concepts

Stability analysis for quadratic equations extends beyond traditional linear stability concepts.
The consideration of eigenvalues persists, but now with a more nuanced approach. The
eigenvalues of the Jacobian matrix, derived from the quadratic equation, provide insights into
the stability of equilibrium points.

Additionally, the initial conditions become paramount in determining stability. A quadratic
equation might have stable solutions for certain initial conditions but become unstable for
others. This sensitivity to initial conditions is a hallmark of nonlinear systems, illustrating how
small variations in the starting state can lead to vastly different long-term behaviors.

The bifurcation theory, often employed in quadratic systems, explores how changes in
parameters influence stability. Bifurcations can lead to the emergence of new equilibrium
points, altering the stability landscape of the system. This intricate interplay of parameters and
initial conditions makes stability analysis for quadratic equations a dynamic and multifaceted
endeavor.

VII. CONCLUSION AND FUTURE DIRECTIONS

Conclusion:

The exploration of linear as well as quadratic second-order differential equations has unveiled a rich
landscape of mathematical intricacies and practical applications. The journey through the analysis of
these equations has provided valuable insights into their behavior, stability properties, and real-world
implications. Understanding linear second-order equations equips with fundamental tools for modeling
various physical phenomena, while exploring quadratic equations allows navigating more intricate
dynamics and nonlinear behaviors. Through stability analysis, numerical methods, and advanced
techniques, a deeper understanding of the complexities inherent in these mathematical models is gained.
The practical applications of linear and quadratic equations span across diverse fields, including
structural engineering, control systems design, population dynamics, economics, and biomechanics.
The versatility and predictive power of these models make them indispensable for understanding and
predicting the behavior of dynamic systems in science, engineering, and beyond. Moreover, its capacity
to reconcile the distance between theoretical mathematics and practical applications is the educational
significance of this investigation, fostering a deeper appreciation for the elegance and utility of
mathematical modeling.
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Future Directions:

As this examination concludes, several avenues emerge for future exploration and advancements in the
analysis of linear and quadratic second-order differential equations. Advancements in numerical
methods, integration of artificial intelligence techniques, and further exploration into nonlinear
dynamics and chaos theory are promising areas for future research. Additionally, the consideration of
multiscale modeling, interdisciplinary applications, and the application of differential equations in
quantum mechanics and quantum computing present exciting opportunities for innovation. Educational
initiatives and outreach programs can also play a pivotal role in engaging the next generation of
researchers and practitioners in this field, fostering a culture of innovation and problem-solving. In
summary, the exploration of linear as well as quadratic second-order differential equations has laid a
robust foundation for understanding dynamic systems and holds tremendous potential for driving future
advancements in science, engineering, and beyond.
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