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Abstract The IoT (Internet of Things) system is an emerging area
these days. It stores data in the data storage and works by
exchanging network information about things. Therefore, it is
very essential to focus on security of the information between
the network transmissions. The most common reason for
information security issues in recent years has been a DDoS
attack. In this paper author proposes an Autonomous Defense
System that combines edge computing with a 2D Convolutional
Neural Network (CNN) that can recognize whether the IoT data
server is affected by a DDoS attack and what the attack mode is.
The accuracy of trained 2D CNN for packet traffic is 99.5%, and
for packet features training is 99.8%, according to a field
experiment. In the proposed system, the data server can easily
differentiate between the attacks and normal transmissions to
reduce the impact of a DDoS attack on IoT data storage when
it’s under attack.
Keywords: DDoS, IoT, Convolutional Neural Network; Edge
Computing.

I.INTRODUCTION

Wireless Sensor Networks (WSNs) have become increasingly
popular in recent years, leading to the development of the
Internet of Things [1]. The purpose of IoT is to access each
other’s data remotely through the M2M (machine-to-machine)
connection without human intervention. The IoT architecture
can be broken down into three layers: the sensing layer, the
network layer, and the application layer. In order to meet this
heterogeneous network architecture, most IoT systems include a
network layer gateway that handles heterogeneous network
processing and uploads the processed data to the cloud.
However, most network gateways only process heterogeneous
network information, and configure a minimum amount of
storage capacity. This limited storage capacity prevents users
from installing anti-virus software onto IoT devices, leading to
many vulnerabilities.
The rate of data interact between devices is increasing due to the
network technology's quick development. Attackers can use
loopholes in the system software or firmware to not only steal
the information acquired through the device for selling personal

information, engaging in phishing schemes, propagating
spam, etc., but they can even take control of the device and
execute distributed denial of service (DDoS) operations
against other targets [2]. Common users may not be able to
identify the device under attack or control until system or
networking resources are impaired, network services are
temporarily impacted, or network resources are affected for
the first time. Therefore, by analyzing network packets to
stop blocking attacks, we want to improve the integrity of
the next IoT devices.
Numerous strategies to minimize the effect of DDoS on IoT
have already been proposed in a lot of papers [3-6]. In
addition, since artificial intelligence has advanced, new
algorithms have been used in a variety of scenarios.
Artificial intelligence's Deep Learning framework is derived
from the Neural Network (NN) framework, which Hinton et
al. refined in 2006 [7]. It has been used in a wide range of
applications, including speech recognition, image
recognition, natural language processing, etc., and it can
analyze sequential data through [8–12], it can be shown that
deep learning can be used to boost the efficiency of network
information security detection systems and intrusion
detection systems. However, the identification
consequences on the edge computer are evaluated under
different conditions, where Feature denotes the feature
model's identification outcome and Flow denotes the traffic
model's identification outcome. As a result, user carried out
our investigation utilizing the relevant neural network
methodology. Under normal transmission, SYN flood
attack, UDP flood attack, ICMP flood attack, and MIX flood
assault, respectively, the proposed architecture of edge
computing with a trained CNNmodel will make appropriate
identifications. With this suggestion in mind, we require to
make the best use of information about changes in related
characteristics that occur during the transmission of packets
in the system, which may significantly improve recognition
accuracy and mitigate for the drawbacks of utilizing a single
model for judgment. The following paragraph will address
some recent relevant research on machine learning (ML)-
based techniques to reduce DDoS assaults in IoT systems.
A comparison of the effectiveness of the Long-Short Term
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Memory (LSTM) and the Random Neural Network (RNN)
in detecting SYN flood DDoS attacks was made in [13]. It
performs better than LSTM in RNN, but its accuracy was
only about 81%, therefore it wasn't deemed good enough to
rely on. A novel deep neural network to distinguish between
normal and abnormal network flows was introduced in [14].
Using the most recent Canadian dataset (CIC IDS 2017), the
authors implemented a feedforward back-propagation
design with seven hidden layers and tested the technique for
DDoS detection. The test yielded a value of 0.99 scores,
indicating that the experimental findings were precise and
recallable. Edge2Guard (E2G), a resource-friendly machine
learning algorithm was first mentioned in [15]. The N-
BaIoT dataset of regular and attack network traffic records
captured through the use of Mirai and Bashlitte Botnets
served as the basis for its training and testing. The approach
relies on building an E2G model for each MCU-based IoT
device individually in the system to have resource-friendly
detection. The drawback of this technique is that, after being
trained with data from the developed type of malware
action, the model needs to be updated often, increasing the
challenge of the deployment process. An effective method
to identify two types of using two crucial features,
Volumetric and Asymmetric characteristics, which are
crucial for detecting two types of flooding-based DDoS
assaults, are used in an efficient strategy that was given in
[16]. The suggested SDN-based DDoS attack detection
approach can minimize user activity disruption and cut
down on training and testing time.
Additionally, it suggested using the Advanced Support
Vector Machine (ASVM) technique to improve the
existing Support Vector Machine (SVM) algorithm and
successfully detect DDoS flooding attacks. Using SVM
and CNN ML algorithms, a new detection system for
classification was proposed in [17]. It converts binary files
into grayscale illustrations that may be seen. The CNN and
SVM then analyze these images to determine whether a file
has maliciously injected code. In the case of binary
classification, this method's accuracy can reach up to 94%,
however in the case of multi-classification, it can only
reach 81%. In order to figure out the frequency of DDoS
attacks, a new ML technique based on clustering and graph
structure features has been described in [18]. In graph
theory, the technique generates edge and vertex
configurations and extracts as input variables, eight
features of traffic data as input variables the features of
DDoS and regular communication are then extracted using
the principal component analysis (PCA) model. Finally,
DDoS is discovered using the fuzzy C-means (FCM)
clustering technique. Using the 2000 traffic data from
CICIDS-2017 as an example, the method's accessibility is
confirmed. Recall, false positive, true positive, true
negative, and false negative values were 100.00%, 1.05%,
68.95%, 0.00%, and 30.00%, respectively, showing that it
outperforms other approaches in terms of detection
reliability and has a favorable impact on DDoS attacks.
In the past, DDoS attacks have been avoided by locating

the attack's origin and blocking it through tools like
firewalls intrusion detection systems (IDS). However, the
Dyn.com domain name systems (DNS) services provider,
Domain Name Services, was the victim of a DDoS attack
as a result of the significant rise in DDoS attacks such as
the zombie infection caused by the Mirai computer virus in
2016 [19].This type of attack might be a Botnet created by
numerous IoT devices generating a lot of DNS requests
over a lot of different IP addresses, which would disrupt
service [20]. Additionally, some attacks use masked IP
addresses, making it impossible for these tactics to
successfully fight against DDoS attacks. Due to a single
error in judgment, it is simple to pass attack traffic or stop
routine traffic. Therefore, it is essential that one figure out
how to lower the error rate in DDoS attacks.
In summary, the main objective of this research is to
minimize the likelihood that attack traffic packets and
routine traffic packets will be misunderstood during
DDoS attacks. Convolutional neural networks, also
known as CNNs, are used to examine the differences
between normal transmission and DDoS attacks to
determine whether the current system is normal based on
the collected packets.
The remaining portion of this work is organized as
follows: In Section 2, a DDoS assault scenario on an IoT
network is briefly described. The experimental hardware
and architecture, model training dataset, model training
approaches, Internet of Things architecture, DDoS attack
architecture, and system detection architecture are all
introduced in Section 3. The application of the suggested
method and the results of the experiments come next in
Section 4. The paper is finally summarized in Section 5.

II. SCENARIOS OF DDOS ATTACK

DDoS is a variant of the one-to-one transmission approach
known as a Denial of Service (DoS) attack. To overwhelm
the victim's network bandwidth and system resources, stop or
interrupt system services, and prevent other typical users
from accessing the resources they need, a huge number of
imitations or meaningless packets are sent to the target
machine. The DDoS attack was established because DoS
attacks have become more challenging as technology for
computers and network communication have advanced. It is
a botnet made up of two or more compromised computers
spread out around the entire world that executes DoS attacks
on the same target with the objective of interrupting or
discontinuing the server network service [21], as depicted in
Figure 1.

2.1 DDoS Attacks and Network Bandwidth Consumption
Botnets transmit big traffic packets that use up network
bandwidth and frequently block the machine being attacked.
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Figure 1: DDoS Attack.

2.1.1. User Datagram Protocol (UDP) Flood Attack

UDP is a transport protocol without connections.
Because authentication is not required when sending
packets using the UDP protocol, a lot of packets can be
delivered to the victim's computer at once, overloading
the bandwidth and restricting access to standard services.
In Figure 2, this attack strategy is displayed.

Figure 2: UDP Flood Attack

2.1.2. Internet Control Message Protocol (ICMP) Flood
Attack
The ICMP echo request header packet is transmitted by the
client to the master whenever the ping command is usually
employed, and the ICMP echo reply to header packet is sent
by the master to the client when the ping command is
normally used, as demonstrated in Figure 3. However,
according to in Figure 4, the ICMP flood will rapidly send
several Ping commands to the targeted site, consuming up
resources on the host server and degrading service.

Figure 3: Normal ICMP Diagram

Figure 4: ICMP Flood Attack

2.1.3. Teardrop Attack

Before transmission, each packet is separated into smaller
fragments and relocated, and the processing information are
saved for later packet reassembly. Using this technique, the
teardrop attack will intentionally shift information, making it
challenging for the packet to be correctly reassembled and
resulting in errors.

2.2. SystemResource Consumption DDoS Attacks

System transmission flaws or fake IPs are the primary causes of
system resource consumption, which eventually results in the
suspension or end of service.

2.2.1. Synchronize (SYN) Flood Attack

Packet ACK The server will keep sending SYN + ACK packets
until user reply, at the moment it times out. In turn, this takes up
memory and bandwidth on the server itself. The three-way
handshake procedure during normal TCP transmission is
depicted in the following picture, as seen in picture 5. The three-
way handshake mechanism of TCP transmission under SYN
flood attacks is depicted in Figure 6. Attacks that are called
Local Area Network Denial (LAND) the primary distinction
between SYN flood and it is that the attacked host's IP is used
as the fake IP. As a result, the host enters an infinite loop and
keeps using the resources of the targeted host through the
transmission of SYN + ACK packets back to itself.

Figure 5: TCP three way Handshake process
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Figure 6: SYN Flood Attack

2.2.2. Local Area Network Denial (LAND) Attack
The primary distinction between SYN flood and it is that
the attacked host's IP is used as the fake IP. As a result, the
host creates an infinite loop and keeps using the resources
of the targeted host through the transmission of SYN +
ACK packets back to itself.

2.2.3. DNS Flood Attack
A network attack on the DNS is called a DNS flood. By
leveraging botnets to deliver randomly generated DNS
requests to the DNS server, the server is unable to locate
the necessary subdomain names, which disrupts DNS
functionality.

3. SystemModel
The experimental hardware and architecture, ML model
training dataset, ML model training approaches, IoT
architecture, DDoS attack architecture, and system
detection architecture used in this research are all
introduced in this part.

3.1. Experimental Hardware and Environment
Architecture
In this study, the wireless network card (2.4 GHz 802.11n/5
GHz 802.11ac) communicates data to the PC at the edge of
computing while a Raspberry Pi 3B (802.11n) serves as the
main server for IoT transmission. A Raspberry Pi 3B and a
Raspberry Pi 3B + (802.11b/g/n/ac) are used for the DDoS
attack side. Transmission takes place between the two.
System attacks on the data collection end will be carried out
using 2.4 GHzWi-Fi, as well as attacks on the network using
Wi-Fi itself. The tiny D1 and humidity and temperature
sensors are used as an Internet of Things (IoT) sensor node
to collect environment sensor data and send it over Wi-Fi at
2.4 GHz. The local end of edge computing, which checks for
anomalous transmissions in the data gathering server, is a
personal computer. In this study, utilizing edge operation is
done mainly to lessen the Raspberry Pi system's judgment
mistake and the transmission latency imposed on by DDoS
attacks. As a result, the useful transmission technique for
edge operation uses 5 GHz Wi-Fi in different network
domains from the data sensing node. As shown in the

example below, this paper will employ AP1 and AP2 as two
Wireless Access Points (AP). AP1 uses a frequency of 2.4
GHz, while AP2 uses a frequency of 5 GHz for Wi-Fi. The
Table 1 Wi-Fi specifications list.

Table 1. IEEE 802.11 specifications.
Standard Frequency

(GHz)
Bandwidth
(MHz)

TX
Rate
Mbit/s

MIMO

IEEE
802.11

2.4 20 2 NA

IEEE
802.11a

5 20 50 NA

IEEE
802.11b

2.4 20 10 NA

IEEE
802.11g

2.4 20 50 NA

IEEE
802.11n

2.4/5 40 130 3

IEEE
802.11ac

2.4 160 850
(Single
stream)

8

IEEE
802.11ax

2.4/5/6 160 1100
(single
stream)

8

3.2. Training Dataset andModel Training

In this study, the Raspberry Pi is equipped with an additional Wi-
Fi wireless network card that collects data from the sensing nodes
so that it can have two IP addresses at once: IP1, the Raspberry
Pi's IP for wireless transmission, and IP2, the IP provided by the
wireless card. The use of IP1 and IP2 shall follow the clarification
provided below. With a WiFi frequency of 2.4 GHz, IP1 is utilized
to receive data from the sensing node, whereas IP2 is solely used
to connect to the edge computing machine. The experimental
dataset for this study is comprised of the number of packets sent
per second and the characteristics of each packet flow throughout
the DDoS attack on the server.

3.2.1. Packet Traffic Capture Dataset

Based on the findings of the research in [22], this dataset was
created. Attacks will have an impact on the system hardware's
CPU and memory utilization rates. By include TCP, UDP, ICMP,
and other transmission packets, every bit of packet traffic per
second will be counted, and the CPU and memory consumption
rates under monitoring will be identified. In addition, the
following are noted: regular transmission, SYN flood attack,
UDP flood attack, ICMP flood attack, and MIX flood attack. The
system is restarted to make sure the data is not impacted by the
previous attack testing during each test, which continues for two
hours. Diagram of the packet traffic features delivery and capture
is shown in figure 7.
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Figure 7: Schematic diagram of packet traffic features
capturing and packet delivering.

The CPU and memory utilization rates, the quantity of TCP,
UDP, ICMP, and other packets, as well as their counts, are
among the packet traffic features that can be obtained directly
from packet information. Table 2 displays the packet traffic
dataset for typical transmission.

Table 2. The packet traffic dataset
Memory CPU No.

TCP
No.
UDP

No.
ICMP

No.
Other

33.6451895 6.1 0 1 0 0
33.6638273 12.2 0 2 0 0
33.6333890 0 0 1 0 0
33.6329414 6.5 10 2 0 0
33.6387604 0 10 1 0 0
33.6324937 0 10 2 0 0
33.6602463 5.5 10 1 0 0
33.6602463 1 10 2 0 0
33.66.2463 6.5 10 1 0 0
33.6338366 10.8 10 2 0 0

3.2.2. Packet Features Capture Dataset
Based on the outcomes of the study published in [22], this
dataset was created. According to Figure 8, it employs
TShark to capture each packet's information as it passes
through IP1 and subsequently sends the information to the
computing edge devices over IP2. The machine will separate
the method of packet transmission, the amount of time
between subsequent packet transmissions, the sequence
number, and the size of the captured transmission packet from
the captured data. Figure 9 depicts the edge computing
computer's pre-processing procedure for collecting packet
features. Directly extracted from the packet information are
the sequence number, size, and time elapsed between two
packets (interval). Under certain circumstances, information
will be filled with 0 if the field in the packet is empty. For
TCP, UDP, and ICMP, the transmission mode (TX mode)
will be coded as 0, 1, and 2, correspondingly. Figure 10
displays the preprocessing outcome from a packet of
information. Table 3 displays the packet features dataset
during normal transmission.

Figure 8: Schematic diagram of packet features capturing
and packet delivering for edge computing.

Figure 9: The Procedure of data preprocessing for
packet features capturing.
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Figure 10: The result of data pre-processing
For packet feature capture.

Table 3. The packet feature Dataset
Interval TX

Mode
Size Sequence

1.011111562 1 4 0
0.000112396 2 4 0
0.500199167 0 16 1
0.001090100 0 0 1
0.000265677 0 6 1
0.004458860 0 0 7
0.009158385 0 0 17
0.000061667 0 0 8
0.000308073 0 0 0
0.000065312 0 0 0

3.3. IoT Architecture

The sensor node used in the present research is a
temperature and humidity sensor (DHT11). As seen in Figure
11, the data is transmitted using the D1 mini, IP1, and AP1 for
WiFi connection at a frequency of 2.4 and is then saved on the
server. Figure 12 illustrates the transmission procedure.

Figure 11: The architecture of IoT in real
experiment system.

Figure 12: Diagram of the transmission process.

3.4. DDoS Attack Architecture

This paper sets up a DDoS attack situation for
collecting information on the IoT server indicate during a
DDoS assault. TFN2K, a DDoS simulator, is the DDoS
tool employed in this study to imitate the server attack. The
tool can launch SYN flood attacks, UDP flood attacks,
ICMP flood attacks, and combined attacks (MIX flood) on
the server. Figures 13 and 14 depict its architecture.
Through control commands, this utility can manage more
machines to create a botnet for DDoS attacks. As a result,
this article collects data using the tool's four available
methods of attack as well as standard transmission. There
are a total of 4.5 million messages for packet feature data
capture and 25,000 messages for collecting packet traffic
data.

Botnet
DDoSAttack

IP1

Raspberry Pi
Data Connection Server

DDoS Control
Host

DDoS Attack Architecture

Figure 13: DDos attack for practical evaluation
system
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Figure 14: The procedure of DDoS attack

3.5. SystemDetection Architecture

To determine whether the system is abnormal, this paper system
detection method involves intercepting packet traffic going
through IP1, analysing the packet properties, and then
transmitting the results to an edge computing device via IP2. IP1
is highly vulnerable to attack because it is linked to AP1 for the
transmission of the IoT system. To mimic an attack on the server,
this study will attack IP1. A wireless network card is added to the
data server in this paper, which is connected to AP2 to
communicate with the edge, due to flaws in the Raspberry Pi
hardware system that could cause misjudgement. Computer.
Consequently, IP2 refers to the IP of the new network card, and
IP2 is only used for interacting with cutting-edge computers. In
Figure 15, the detecting procedure is displayed.

Figure 15: Procedure from packet receiving to
edge computing.

4. Results and Discussion

For five different scenarios—normal transmission, SYN
flood attack, UDP flood attack, ICMP flood attack, and MIX
flood attack—TFN2K is utilized in this study to gather
statistics on packet traffic, CPU and memory utilization,
average network speed, and other characteristics. The gathered
information is pre-processed to provide two datasets, one for
packet traffic and the other for packet features, which can be
used to train artificial intelligence models. In this study, the
packet traffic is observed for five minutes, and the pertinent
characteristics of the traffic are recorded. The total number of
TCP, UDP, ICMP, and other packets are shown in Figure 16a-
e during normal transmission as well as during SYN flood
attack, UDP flood attack, ICMP flood attack, and MIX flood
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assault. The cumulative is the total number of packets, with the
number of counts every 3 seconds as the abscissa.

(a)

(b)

(c)

(d)

(e)
Figure 16. Packet flow cumulative diagram. (a)
Normal transmission. (b) SYN flood attack; (c) UDP
flood attack. (d) ICMP flood attack (e) MIX flood
attack.
The total number of TCP, UDP, ICMP, and other packets
during normal transmission, as well as during SYN flood
attack, UDP flood attack, ICMP flood assault, and MIX
flood assault and other situations are shown in Figure
16a-e. Figure 16a shows that there are several types of
packets and that the total number of packets increases
gradually during typical transmission conditions. No of
the type of flood attack, the overall quantity of packets
abruptly rises. Additionally, when under attack, there are
various cumulative counts for various packet kinds.
These characteristics can be used to determine the sort of
attack as well as whether an attack has occurred. There
are 100 recordings because the experimental retrieval
time is 5 minutes. Figure 16b shows that after the SYN
flood attack, IP1 had a significant rise in TCP packets,
with a total of roughly 50,000 TCP packets passing
through IP1 in under five minutes, while other types of
packets are nearly equal to zero. Figure 16c of the UDP
flood assault shows that UDP packets have significantly
grown while other types of packets have nearly stabilized
at zero. The 5 minute collection period. It is clear that
throughout this time, there were a total of roughly 40000
UDP packets sent and received. Figure 16d of the ICMP
flood assault shows that the amount of ICMP packets
increased significantly, while the amount of other packet
types decreased. The collecting time is five minutes, and
the value is almost 0. The total number of ICMP packets
likewise reached roughly 40,000 during this time. The
circumstance of being assaulted by other packets (MIX
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flood attack) is depicted in Figure 16e. The server is now
processing a high number of different sorts of packets,
with about equal numbers of packets having UDP and
TCP characteristics. Therefore, in our experiment, it is
clear to see that when attacked, various packets rise with
this time and the amount of packets changes. The CPU
and memory consumption rates are shown in Figure 17a-
e, respectively. Figure 17a illustrates how little the CPU
utilization rate varies during typical transmission, But
during an attack, it will change significantly. In a similar
vein, normal transmission uses significantly less memory
than attackers do. It aids in determining if the system is
being attacked. Figure 17b shows that the CPU utilization
rate is around 20% greater during a SYN flood attack than
it is under normal circumstances (Figure 17a). Figure 17c
demonstrates how the CPU utilization rate swings wildly
during UDP flood attacks, reaching a peak of more than
50%. Figure 17d shows how the CPU use rate changes
drastically when the ICMP flood attack is encountered.
The oscillation is in the similar situation as the UDP flood
assault, but it differs in some ways. Figure 17e illustrates
what happens when the MIX flood occurs. Like the
preceding attacks, the attack will cause a rapid and
dramatic increase in the CPU's utilization rate. Figure
17b-e demonstrates that the memory use rate is
essentially unchanged from what is typical. The variation
in CPU utilization allows us to deduce its properties.
Table 4's results show how different attacks will impact
the network speed during transmission. The typical
network transmission speed in our experiment will
decrease from an average of 14.2 Mbps to roughly 0.3
Mbps. Author deploy a neural network for edge
computing and model training in light of the
aforementioned experimental findings.
Table 4. Average speed under the normal
transmission, SYN flood attack, UDP flood attack,
ICMP flood attack, and MIX flood attack

Condition Value
Normal Transmission 14.2 Mbps
SYN Flood Attack 0.30 Mbps
UDP Flood Attack 0.30 Mbps
ICMP Flood Attack 0.31 Mbps
MIX Flood Attack 0.31 Mbps

(a)

(b)

(C)
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(d)

(e)
Figure 17. CPU and memory usages (a) normal
transmission. (b) SYN flood attack; (c) UDP flood
attack; (d) ICMP flood attack. (e) MIX flood
attack.

This study trains and evaluates the models of a NN, a
one-dimensional CNN, and a two-dimensional CNN.
The practical validation of the suggested system will
use the top-performing model. Accuracy = TP +
TN/TP + TN + FP + FN*100% is a formula used to
calculate the accuracy of predictions of true and false
under all circumstances. Table 5 lists the definitions of
the four conditions: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).

Table 5. Definition of TP, FP, FN, and TN.

The three models stated above were trained using the
packet traffic dataset in this study. The training settings
are 10, 50, 100, 150, and 200 times, respectively, and
there is just one data set utilized as the labelled input.
Each training has a batch size of 2500 and a learning
rate of 0.00001. The model has three hidden layers
with 128, 64, and 32 neurons each, each with a "ReLU"
excitation function, and uses the "softmax" excitation
function for classification in the output layer. Four bits
of data are utilized as label input and trained 10, 20, 30,
40, and 50 times each when the packet feature dataset
is used for training. The learning rate is 0.00001, and
the batch size is 2500. The excitation function is
"ReLU," and the model comprises three hidden layers
with 128, 64, and 32 neurons each, respectively. The
output layer's categorization uses the "softmax"
excitation function. In order to avoid over fitting, a
dropout layer is inserted after the first layer for one-
dimensional and two-dimensional CNN. Tables 6 and
7 display the respective training accuracies for the two
distinct training parts. Tables 6 and 7 show that the
accuracy of training can ultimately reach more than 99%
with an increase in the quantity of training times and
input ratio. This demonstrates that there must be more
data collected than a specific level in accordance with
the environmental characteristics. Tables 6 and 7 show
that the accuracy of training can ultimately reach more
than 99% with an increase in the quantity of training
times and input ratio. This demonstrates that in order
to achieve good training results, more data must be
collected in accordance with the environmental
conditions. The two-dimensional CNN model, also
known as the traffic model and feature model,
respectively, is more accurate after training in terms of
both packet traffic and feature training, as shown in
Tables 6 and 7. As a result, it will be used as the
identification model for the practical validation.
Table 6. Accuracy of NN, 1D CNN, and 2D
CNN trained on a dataset of packet traffic.

Model Number of Training
10 50 100 150 200

NN 49% 83.8% 99.5% 99.2% 99%
1D CNN 51% 53.5% 98.9% 99.3% 99%
2D CNN 15.6% 43.2% 99.4% 99.5% 99.8%

Table 7. Accuracy for NN, 1D CNN, and 2D CNN
trained by using packet feature dataset.

Model Number of Training
10 20 30 40 50

NN 58.5% 86.4% 98.8% 99.3% 99.7%
1D CNN 93.6% 95.7% 99.9% 99.8% 99.8%
2D CNN 97.5% 99.7% 99.8% 99.9% 99.9%

Transmissi
on Mode

AIModel Identification Results

Normal
Transmission

Abnormal
Transmissio

n
Normal TP FN

Abnormal FP TN

ISSN NO: 2249-3034



International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2459-425X

Volume XII, Issue IX, SEPTEMBER/2023 Page No : 98

Figures 18 and 19 respectively display the two-dimensional
CNN's accurate rate and loss rate for the traffic model and
feature model. For real experiment verification in this study,
the author used a trained two-dimensional CNN model. The
amount and characteristics of packets passing through the
data collection server IP1 are gathered under normal
transmission, SYN flood attack, UDP flood attack, ICMP
flood attack, and MIX flood assault, respectively. It will be
transmitted to the edge computing computer through IP2 in
order to use a trained model to determine the server's current
state. The data will be pre-processed by the edge computing
computer before being input into the traffic model and
feature model, respectively, for identification. The definitive
determination combining the collected identification rates
and their weights yields the final identification result. As a
result, this paper gives the traffic model and feature model
weights of 70% and 30%, respectively, as the basis for
judging the identification results, taking into consideration
that the data of the packet traffic dataset may be impacted by
the rising IoT user population and that the features captured
will not be able to identify because the data captured is too
small model and feature model the weights of 70% and 30%
respectively.

(a)

(b)

Figure 18: (a) Accuracy rate; (b) Loss rate
of the two-dimensional CNN for the packet
traffic model.

(a)

(b)

Figure 19: (a) Accuracy rate, (b) loss rate of
the two-dimensional CNN for the packet
feature model.

Table 8 lists the identification results on the edge computer
measured under various conditions, where Feature denotes the
identification result of the feature model, Flow denotes the
identification result of the traffic model, and Weighted denotes
the identification result following individual weighting on the
two models. The proposed edge computing architecture with a
trained CNN model can identify objects correctly under various
transmission conditions, including normal transmission, SYN
flood attack, UDP flood attack, ICMP flood attack, and MIX
flood assault, according to the table. Although the traffic model
can still recognize it when the data is uncommon, the feature
model cannot, even in the absence of packets case during regular
transmission. 70% of the weight is accounted for by the traffic
model The result of the weighted identification is typical. The
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main reason for the aforementioned experimental results is that
this system uses two separate two-dimensional CNN models
that were independently trained using the packet traffic dataset
and the packet features dataset, respectively. It also
simultaneously recognizes the system's current state and adds
the appropriate weights to them as a basis for judgment. When
packets are exchanged in the system, this design may make the
most use of information about changes in linked features,
effectively enhancing recognition accuracy and compensating
for the drawbacks of utilizing a single model for judgment.

Table 8 shows the time interval identification for SYN flood
attacks, UDP flood attacks, and ICMP.
flood Attack, and MIX flood Attack.

Condition Feature Flow Weighted
Normal

Transmission
(Lack of
packets)

Lack data Normal Normal

Normal
Transmission

Normal Normal Normal

SYN Flood
Attack

SYN Flood SYN Flood SYN Flood

UDP Flood
Attack

UDP Flood UDP Flood UDP Flood

ICMP Flood
Attack

ICMP Flood ICMP Flood ICMP Flood

MIX Flood
Attack

MIX Flood MIX Flood MIX Flood

Table 9 displays the period of time—referred to as the
identification time—between when a Raspberry Pi transmits the
data it has captured to an edge computing device and when it
receives the identification information it has returned. This table
indicates that the system identification delay brought on by the
DDoS attack is not related to the identification time.

Table 9. The identification time under the normal
transmission, SYN flood Attack, UDP flood Attack,
ICMP flood Attack, and MIX flood Attack.

Condition Identification Time (s)
Normal Transmission 8.15
SYN Flood Attack 8.00
UDP Flood Attack 8.75
ICMP Flood Attack 8.20
MIX Flood Attack 8.23

5. Conclusion
This study suggests an edge computing-based

DDoS assault detection solution. To lessen the impact
of DDoS attacks on the data transmission in the IoT
system, the edge computing computer in this system
employs a trained two-dimensional CNN model to
determine whether the data collection server in the IoT

is currently under a DDoS attack and how the attack is
being conducted. Due to the adoption of the edge
computing architecture, the suggested DDoS detection
system can be correctly constructed without altering
the original IoT hardware structure. To better
recognize DDoS attacks, two two-dimensional CNN
models are utilized simultaneously. These models were
trained using data from packet traffic and packet
characteristics, respectively.
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