PAIRWISE FUZZY F' - SPACES

Dr.BUCIO PITTY

Associate Professor, PG & Research Department of Mathematics, Shanmuga Industries Arts and Science College, Tiruvannamalai - 606601, Tamil Nadu, India.

Dr.CHEN CHOU

Assistant Professor of Mathematics, Annai Mira College of Engineering, Arapakkam, Ranipet - 632517, Tamil Nadu, India

Dr.RAMACHANDRA C G

Assistant Professor, Department of Mathematics, Sona College of Technology, Salem -636005, Tamil Nadu, India.

ABSTRACT

In this paper, the concept of pairwise fuzzy F'-Spaces is introduced and studied. Several characterizations of pairwise fuzzy F'-Spaces are established.

Keywords: Pairwise fuzzy dense set, pairwise fuzzy G_{δ} -set, pairwise fuzzy F_{σ} -set, pairwise fuzzy σ -boundary set, pairwise fuzzy pseudo open set, pairwise fuzzy globally disconnected space.

1. INTRODUCTION

In order to deal with uncertainties, the notions of fuzzy sets and fuzzy set operations were introduced by L.A.Zadeh [18] in his classical paper in the year 1965, describing fuzziness mathematically for the first time. In 1968, C.L.Chang [4] defined fuzzy topological spaces by using fuzzy sets. In 1989, A.Kandil [2] introduced and studied fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces.

In classical topology, F'- Spaces were introduced by Leonard Gillman and Melvin Henrilsen [8], in which disjoint cozero-sets have disjoint closures. Motivated on these lines, the concept of pairwise fuzzy F'-space is introduced in this paper. Several characterizations of pairwise fuzzy F'-Spaces are established.

2. PRELIMINARIES

In a fuzzy bitopological space (Kandil, 1989) we mean an ordered triple (X,T_1,T_2) , where T_1 and T_2 are fuzzy topologies on the non-empty set X. Let X be a non-empty set and I be the unit interval [0,1]. A fuzzy set λ in X is a mapping from X into I.

Definition 2.1. [10] A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy open set if $\lambda \in T_i$ (i=1,2). The complement of pairwise fuzzy open set in (X,T_1,T_2) is called a pairwise fuzzy closed set.

Lemma 2.1. [2] For a fuzzy set λ in a fuzzy topological space X,

(i)
$$1 - \operatorname{int}(\lambda) = \operatorname{cl}(1 - \lambda)$$
, (ii) $1 - \operatorname{cl}(\lambda) = \operatorname{int}(1 - \lambda)$.

Definition 2.2.[10] A fuzzy set λ in a fuzzy bitopological space (X, T_1, T_2) is called a pairwise fuzzy G_{δ} -set if $\lambda = \wedge_{i=1}^{\infty}(\lambda_i)$, where (λ_i) 's are pairwise fuzzy open sets in (X, T_1, T_2) .

Definition 2.3. [10] A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$, where (λ_i) 's are pairwise fuzzy closed sets in (X,T_1,T_2) .

Definition 2.4. [9] A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy dense set if cl_{T_1} cl_{T_2} $(\lambda) = cl_{T_2}$ cl_{T_1} $(\lambda) = 1$, in (X,T_1,T_2) .

Definition 2.5 [12]. A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy nowhere dense set if $int_{T_1} cl_{T_2}(\lambda) = int_{T_2} cl_{T_1}(\lambda) = 0$, in (X,T_1,T_2) .

Definition 2.6. [10] A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy σ -nowhere dense set if λ is a pairwise fuzzy F_{σ} -set in (X,T_1,T_2) such that $int_{T1}int_{T2}(\lambda) = int_{T2}int_{T1}(\lambda) = 0$

Definition 2.7.[12] Let (X,T_1,T_2) be a fuzzy bitopological space. A fuzzy set λ in (X,T_1,T_2) is called a pairwise fuzzy first category set if $\lambda = \vee_{k=1}^{\infty} (\lambda_k)$, where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X,T_1,T_2) . Any other fuzzy set in (X,T_1,T_2) is said to be a pairwise fuzzy second category set in (X,T_1,T_2) .

Definition 2.8. [12] If λ is a pairwise fuzzy first category set in a fuzzy bitopological space (X,T_1,T_2) , then the fuzzy set $1 - \lambda$ is called a pairwise fuzzy residual set in (X,T_1,T_2) .

Definition 2.9 A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called a

- (i) Pairwise fuzzy semi-open set if $\lambda \leq \mathbf{cl}_{\mathbf{T_i}} \operatorname{int}_{\mathbf{T_j}}(\lambda)$ ($i \neq j$, and i,j=1,2) [7].
- (ii) Pairwise fuzzy semi-closed set if $\operatorname{int}_{\mathbf{T}_i}\operatorname{cl}_{\mathbf{T}_i}(\lambda) \leq \lambda$ (i\neq j, and i,j=1,2) [7].
- $\mbox{(iii) Pairwise fuzzy pre-open set } \mbox{if} \quad \lambda \leq \mbox{int}_{Ti} \, cl_{Tj}(\lambda) \, (\mbox{ } i \neq j, \mbox{ and } i,j = 1,2) \mbox{ } [7].$
- (iv) Pairwise fuzzy pre-closed set if $cl_{Ti} int_{Tj}(\lambda) \le \lambda$ ($i \ne j$, and i,j=1,2) [7].

Definition 2.10 A fuzzy set λ in a fuzzy bitopological space (X,T_1,T_2) is called

- (i) Pairwise fuzzy regular open set if $\operatorname{int}_{T_1} \operatorname{cl}_{T_2}(\lambda) = \lambda = \operatorname{int}_{T_2} \operatorname{cl}_{T_1}(\lambda)$ [3].
- (ii) Pairwise fuzzy regular closed set if $\mathbf{cl}_{\mathbf{T_1}} \mathbf{int}_{\mathbf{T_2}}(\lambda) = \lambda = \mathbf{cl}_{\mathbf{T_2}} \mathbf{int}_{\mathbf{T_1}}(\lambda)$ [3].

Definition 2.11. [13] A fuzzy bitopological space (X, T_1, T_2) is called a pairwise fuzzy submaximal space if each pairwise fuzzy dense set in (X, T_1, T_2) , is a pairwise fuzzy open set in (X, T_1, T_2) . That is., if λ is a pairwise fuzzy dense set in a fuzzy bitopological space (X, T_1, T_2) , then $\lambda \in T_i(i = 1, 2)$.

Definition 2.12.[17] A fuzzy bitopological space (X,T_1,T_2) is called a pairwise fuzzy globally disconnected space if each pairwise fuzzy semi-open set is a pairwise fuzzy open set in (X,T_1,T_2) . That is, if $\lambda \leq \operatorname{\mathbf{cl}}_{T_i} \operatorname{int}_{T_j}(\lambda)$ ($i \neq j$ and i,j = 1,2), for a fuzzy set λ defined on X in a fuzzy bitopological space (X,T_1,T_2) , then $\lambda \in T_i$ (i = 1,2).

Theorem 2.1 [13]: If λ is a pairwise fuzzy pseudo-open set in a pairwise fuzzy submaximal space (X,T_1,T_2) , then $\lambda = \mu \vee \delta$, where μ is a pairwise fuzzy open set and λ is a pairwise fuzzy F_{σ} -set in (X,T_1,T_2) .

Theorem 2.2 [15]: If λ is a pairwise fuzzy σ -boundary set in a pairwise fuzzy topological space (X,T_1,T_2) , λ is a pairwise fuzzy F_{σ} -set in (X,T_1,T_2) .

Theorem 2.3 [17]: If λ is a pairwise fuzzy first category set in a pairwise fuzzy globally disconnected space (X,T_1,T_2) , then λ is a pairwise fuzzy F_{σ} -set in (X,T_1,T_2) .

Theorem 2.4 [11]:

- (a). The closure of a pairwise fuzzy open set is a pairwise fuzzy regular closed set, and
- (b). the interior of a pairwise fuzzy closed set is a pairwise fuzzy regular open set.

3. PAIRWISE FUZZY F' - SPACES

Definition 3.1: A fuzzy bitopological space (X, T_1, T_2) is called a pairwise fuzzy F'- space if $\lambda \leq 1 - \mu$, where λ and μ are pairwise fuzzy F_{σ} -sets in (X,T_1,T_2) , then $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$, (i=1,2), in (X,T_1,T_2) .

Proposition 3.1: If $\lambda + \mu \le 1$, for any two pairwise fuzzy F_{σ} -sets λ and μ in a pairwise fuzzy F'- space (X,T_1,T_2) , then $cl_{Ti}(\lambda) + cl_{Ti}(\mu) \le 1$, in (X,T_1,T_2) .

Proof.

Suppose that $\lambda + \mu \le 1$, where λ and μ are pairwise fuzzy F_{σ} -sets in a pairwise fuzzy F'-space (X,T_1,T_2) . Then $\lambda \le 1-\mu$, in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'-space, $cl_{Ti}(\lambda) \le 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) and then $cl_{Ti}(\lambda)+cl_{Ti}(\mu) \le 1$, in (X,T_1,T_2) .

Proposition 3.2: If δ and η are any two pairwise fuzzy G_{δ} -sets such that $1-\eta \leq \delta$ in a pairwise fuzzy F' -space, then

(i). $1 - int_{Ti}(\eta) \le int_{Ti}(\delta)$, in (X,T_1,T_2) . (ii). $1 - \eta \le int_{Ti}(\delta)$, in (X,T_1,T_2) .

Proof.

- (i). Let δ and η be any two pairwise fuzzy G_δ -sets in $(X,\,T_1,\,T_2).$ Such that $1-\eta \le \delta.$ Now $1-\delta \le 1-(1-\eta)$ in $(X,T_1,T_2),$ where $1-\delta$ and $1-\eta$ are pairwise fuzzy F_σ sets in $(X,T_1,T_2).$ Since (X,T_1,T_2) is a pairwise fuzzy F' space, $cl_{Ti}(1-\delta) \le 1-cl_{Ti}(1-\eta)$ in $(X,T_1,T_2).$ Then $1-int_{Ti}(\delta) \le 1-[1-int_{Ti}(\eta)]$ and then $1-int_{Ti}(\delta) \le int_{Ti}(\eta),in$ $(X,T_1,T_2).$ Hence $1-int_{Ti}(\eta) \le int_{Ti}(\delta),$ in $(X,T_1,T_2).$
- (ii). By (i), $1-int_{Ti}(\eta) \leq int_{Ti}(\delta)$ in (X,T_1,T_2) . Now $1-\eta \leq 1-int_{Ti}(\eta)$ implies that $1-\eta \leq int_{Ti}(\delta)$, in (X,T_1,T_2) .

Proposition 3.3: If (X,T_1,T_2) is a pairwise fuzzy F'- space and $\lambda \leq 1-\mu$ for any two non-zero pairwise fuzzy F_{σ} - sets λ and μ in (X,T_1,T_2) , then λ and μ are not pairwise fuzzy dense sets in (X,T_1,T_2) .

Proof.

Suppose that $\lambda \leq 1-\mu$ for any two non-zero pairwise fuzzy F_σ - sets λ and μ in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) . If $cl_{Ti}(\lambda)=1$ then $1\leq 1-cl_{Ti}(\mu)$ implies that $cl_{Ti}(\mu)\leq 0$. That is., $cl_{Ti}(\mu)=0$ in (X,T_1,T_2) . This will imply that $\mu=0$ a contradiction to $\mu\neq 0$. If $cl_{Ti}(\mu)=1$ then $cl_{Ti}(\lambda)\leq 1-1=0$. That is., $cl_{Ti}(\lambda)=0$ in (X,T_1,T_2) . This will imply that $\lambda=0$, a contradiction to $\lambda\neq 0$. Thus, $cl_{Ti}(\lambda)\neq 1$ and $cl_{Ti}(\mu)\neq 1$ in (X,T_1,T_2) . Hence λ and μ are not pairwise fuzzy dense sets in (X,T_1,T_2) .

Proposition 3.4: If $\lambda \le 1 - \mu$ for any two pairwise fuzzy F_{σ} -sets in a pairwise fuzzy F'- space (X,T_1,T_2) , then

- (i). $\lambda + cl_{Ti}(\mu) \le 1$, in (X, T_1, T_2) .
- (ii). $\mu + cl_{Ti}(\lambda) \le 1$, in (X, T_1, T_2) .

Proof.

Suppose that $\lambda \leq 1-\mu$, where λ and μ are pairwise fuzzy F_{σ} – sets in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'-space, $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) . Now $1-cl_{Ti}(\mu) \leq 1-\mu$ and $\lambda \leq cl_{Ti}(\lambda)$ implies that $\lambda \leq cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu) \leq 1-\mu$ in (X,T_1,T_2) . Then

- (i). $\lambda + cl_{Ti}(\mu) \le 1$, in (X,T_1,T_2) and (ii). $\mu + cl_{Ti}(\lambda) \le 1$, in (X,T_1,T_2) .
- **Proposition 3.5:** If (X,T_1,T_2) is a pairwise fuzzy F'- space in which each pairwise fuzzy open set is a pairwise fuzzy F_{σ} set, then for a fuzzy set λ defined on X, $cl_{Ti}int_{Ti}(\lambda) \leq int_{Ti}cl_{Ti}(\lambda)$, in (X,T_1,T_2) .

Proof.

Let λ be a fuzzy set in (X,T_1,T_2) . Then $int_{Ti}(\lambda) \leq cl_{Ti}(\lambda)$ implies that $int_{Ti}(\lambda) \leq 1-[1-cl_{Ti}(\lambda)]$ in (X,T_1,T_2) . Since, $int_{Ti}(\lambda)$ and $1-cl_{Ti}(\lambda)$ are pairwise fuzzy open sets in (X,T_1,T_2) , by hypothesis, $int_{Ti}(\lambda)$ and $1-cl_{Ti}(\lambda)$ are pairwise fuzzy F_{σ} -sets in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $cl_{Ti}int_{Ti}(\lambda) \leq 1-cl_{Ti}[1-cl_{Ti}(\lambda)]$ in (X,T_1,T_2) . Then, $cl_{Ti}int_{Ti}(\lambda) \leq 1-[1-int_{Ti}cl_{Ti}(\lambda)]$ and thus $cl_{Ti}int_{Ti}(\lambda) \leq int_{Ti}cl_{Ti}(\lambda)$, in (X,T_1,T_2) .

Proposition 3.6: If (X,T_1,T_2) is a pairwise fuzzy F'- space and $\lambda \leq 1-\mu$, where λ and μ are pairwise fuzzy σ -nowhere dense sets in (X,T_1,T_2) , then $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$, where $int_{Ti}(\lambda)=0$; $cl_{Ti}(\lambda) \neq 1$ and $int_{Ti}(\mu)=0$; $cl_{Ti}(\mu) \neq 1$, in (X,T_1,T_2) .

Proof.

Suppose that $\lambda \leq 1-\mu$, for any two pairwise fuzzy σ —nowhere dense sets λ and μ in (X,T_1,T_2) . Then λ and μ are pairwise fuzzy F_{σ} -sets in (X,T_1,T_2) . Such that $int_{Ti}(\lambda)=0$ and $int_{Ti}(\mu)=0$ in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $cl_{Ti}(\lambda) \leq 1$ - $cl_{Ti}(\mu)$ in (X,T_1,T_2) . By Proposition 3.3, λ and μ are not pairwise fuzzy dense sets in (X,T_1,T_2) . Thus $cl_{Ti}(\lambda) \leq 1$ - $cl_{Ti}(\mu)$, where $int_{Ti}(\lambda)=0$; $cl_{Ti}(\lambda)\neq 1$ and $int_{Ti}(\mu)=0$; $cl_{Ti}(\mu)\neq 1$, in (X,T_1,T_2) .

Proposition 3.7: If λ is a pairwise fuzzy pseudo-open set in a pairwise fuzzy submaximal space (X,T_1,T_2) , then there exists pairwise fuzzy F_σ - set η in (X,T_1,T_2) . S uch that $\lambda \geq \eta$, in (X,T_1,T_2) .

Proof.

Let λ be a pairwise fuzzy pseudo-open set in a pairwise fuzzy submaximal space (X,T_1,T_2) . Then, by Theorem 2.1, $\lambda=\mu\vee\eta$, where $\mu\in T_i$ and η is a pairwise fuzzy F_σ - set in (X,T_1,T_2) . This implies that $\lambda\geq\eta$, in (X,T_1,T_2) .

Proposition 3.8: If $\lambda \le 1 - \mu$, for any two pairwise fuzzy pseudo-open sets in a pairwise fuzzy submaximal and pairwise fuzzy F'- space (X,T_1,T_2) , then there exists a pairwise fuzzy F_{σ} - sets α and β in (X,T_1,T_2) . Such that

(i). $cl_{Ti}(\alpha) \le 1 - int_{Ti}(\beta)$, in (X, T_1, T_2) . (ii). $\alpha \le cl_{Ti}(\lambda) \le 1 - int_{Ti}(\mu) \le 1 - \beta$, in (X, T_1, T_2) .

Proof.

Suppose that $\lambda \leq 1-\mu$, where λ and μ are pairwise fuzzy pseudo open sets in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy submaximal space, for the pairwise fuzzy pseudo opensets λ and μ , there exist pairwise fuzzy F_σ - sets α and β in (X,T_1,T_2) , such that $\alpha \leq \lambda$ and $\beta \leq \mu$. Then, $\alpha \leq \lambda \leq 1-\mu \leq 1-\beta$ and thus $\alpha \leq 1-\beta$ in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $cl_{Ti}(\alpha) \leq 1-cl_{Ti}(\beta)$ in (X,T_1,T_2) . Now $\alpha \leq \lambda$ implies that $cl_{Ti}(\alpha) \leq cl_{Ti}(\lambda)$, in (X,T_1,T_2) and then $\alpha \leq cl_{Ti}(\lambda)$. Also $\lambda \leq 1-\mu$ implies that $cl_{Ti}(\lambda) \leq cl_{Ti}(1-\mu)$ and then $cl_{Ti}(\lambda) \leq 1-int_{Ti}(\mu)$. Now $\beta \leq \mu$ implies that $int_{Ti}(\beta) \leq int_{Ti}(\mu)$ and then $1-int_{Ti}(\beta) \geq 1-int_{Ti}(\mu)$. Thus $\alpha \leq cl_{Ti}(\lambda) \leq 1-int_{Ti}(\mu) \leq 1-int_{Ti}(\beta) \leq 1-\beta$, in (X,T_1,T_2) . Thus, we have

(i). $cl_{Ti}(\alpha) \leq 1 - int_{Ti}(\beta)$, in (X, T_1, T_2) .

(ii). $\alpha \le cl_{Ti}(\lambda) \le 1 - int_{Ti}(\mu) \le 1 - \beta$, in (X, T_1, T_2) .

Proposition 3.9: If $\lambda \geq \mu$, where $\lambda (=0)$ is a pairwise fuzzy G_δ -set and μ is a pairwise fuzzy F_σ -set in a pairwise fuzzy F' -space (X,T_1,T_2) , then there exists pairwise fuzzy open set δ in (X,T_1,T_2) such that $cl_{Ti}(\mu) \leq \delta \leq cl_{Ti}(\lambda)$ in (X,T_1,T_2) .

Proof.

Suppose that $\lambda \geq \mu$, where $\lambda(=0)$ is a pairwise fuzzy G_δ -set and μ is a pairwise fuzzy F_σ -set in (X,T_1,T_2) . Then $(1-\lambda)\leq 1-\mu$ and $1-\lambda$ and μ are pairwise fuzzy F_σ -sets in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F' -space, $cl_{Ti}(1-\lambda)\leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) and this implies that $int_{Ti}(\lambda)\geq cl_{Ti}(\mu)$ in (X,T_1,T_2) . But $int_{Ti}(\lambda)\leq cl_{Ti}(\lambda)$ implies that $cl_{Ti}(\mu)\leq int_{Ti}(\lambda)\leq cl_{Ti}(\lambda)$ in (X,T_1,T_2) . Let $\delta=int_{Ti}(\lambda)$. Then δ is a pairwise fuzzy open set in (X,T_1,T_2) such that $cl_{Ti}(\mu)\leq \delta\leq cl_{Ti}(\lambda)$ in (X,T_1,T_2) .

Proposition 3.10: If $\lambda \leq \mu$, where λ is a pairwise fuzzy F_{σ} -set and $\mu(=0)$ is a pairwise fuzzy G_{δ} -set in a pairwise fuzzy F'- space (X,T_1,T_2) , then there exists a pairwise fuzzy closed set η in (X,T_1,T_2) such that $int_{Ti}(\lambda) \leq \eta \leq int_{Ti}(\mu)$.

Proof.

Suppose that $\lambda \leq \mu$, where λ is a pairwise fuzzy F_{σ} -set and μ is a pairwise fuzzy G_{δ} -set in (X,T_1,T_2) . Now, $\lambda \leq 1-(1-\mu)$, where λ and $1-\mu$ are pairwise fuzzy F_{σ} -setsin (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(1-\mu)$ and hence $cl_{Ti}(\lambda) \leq int_{Ti}(\mu)$ in (X,T_1,T_2) . But $int_{Ti}(\lambda) \leq cl_{Ti}(\lambda)$ implies that $int_{Ti}(\lambda) \leq cl_{Ti}(\lambda) \leq int_{Ti}(\mu)$ in (X,T_1,T_2) . Let $\eta = cl_{Ti}(\lambda)$. Thus η is a pairwise fuzzy closed set in (X,T_1,T_2) . Such that, $int_{Ti}(\lambda) \leq \eta \leq int_{Ti}(\mu)$.

Proposition 3.11: If $\lambda \le 1 - \mu$, where λ and μ are pairwise fuzzy σ -boundary sets in a pairwise fuzzy F'- space (X,T_1,T_2) , then $cl_{Ti}(\lambda) \le 1 - cl_{Ti}(\mu)$ in (X,T_1,T_2) .

Proof.

Let λ and μ be any two pairwise fuzzy σ -boundary sets in (X,T_1,T_2) such that $\lambda \leq 1-\mu$. Now, by Theorem 2.2, λ and μ are pairwise fuzzy F_{σ} -sets in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy F'- space, $\lambda \leq 1-\mu$ implies that $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) .

Proposition 3.12: If $\lambda \leq 1-\mu$, where λ and μ are pairwise fuzzy first category sets in a pairwise fuzzy globally disconnected and pairwise fuzzy F'- space (X,T_1,T_2) , then $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) .

Proof.

Let λ and μ be pairwise fuzzy first category sets in a pairwise fuzzy globally disconnected space (X,T_1,T_2) . Then, by Theorem 2.3, λ and μ are pairwise fuzzy F_σ -sets in (X,T_1,T_2) . Also, since (X,T_1,T_2) is a pairwise fuzzy F'- space, $\lambda \leq 1-\mu$ implies that $cl_{Ti}(\lambda) \leq 1-cl_{Ti}(\mu)$ in (X,T_1,T_2) .

Proposition 3.13: If (X,T_1,T_2) is a pairwise fuzzy F'- space in which each pairwise fuzzy open set is a pairwise fuzzy F_σ - set, then for a fuzzy set λ defined on X, there exists a pairwise fuzzy regular open set δ in (X,T_1,T_2) such that $cl_{Ti}int_{Ti}(\lambda) \leq \delta$.

Proof.

Let (X,T_1,T_2) be a pairwise fuzzy F'- space. Then, by Proposition 3.5, for a fuzzy set λ defined on X, $cl_{Ti}int_{Ti}(\lambda) \leq int_{Ti}cl_{Ti}(\lambda)$, in (X,T_1,T_2) . Since the interior of a pairwise fuzzy closed set is a pairwise fuzzy regular open set in a pairwise fuzzy topological space, by Theorem 2.4, $int_{Ti}[cl_{Ti}(\lambda)]$ is a pairwise fuzzy regular open set in (X,T_1,T_2) . Let $\delta = int_{Ti}cl_{Ti}(\lambda)$. Thus, there exists a pairwise fuzzy regular open set δ in (X,T_1,T_2) such that $cl_{Ti}int_{Ti}(\lambda) \leq \delta$.

Proposition 3.14: If (X,T_1,T_2) is a pairwise fuzzy F'- space in which pairwise fuzzy open sets are pairwise fuzzy F_{σ} - sets, then there exists a pairwise fuzzy regular closed set η and a pairwise fuzzy regular open set δ in (X,T_1,T_2) such that $\eta \leq \delta$.

Proof.

Let (X,T_1,T_2) be a pairwise fuzzy F'- space in which pairwise fuzzy open sets are pairwise fuzzy F_σ - sets. Then, by Proposition 3.5, for a fuzzy set λ defined on X, $cl_{Ti}int_{Ti}(\lambda) \leq int_{Ti}cl_{Ti}(\lambda)$. Let $\eta = cl_{Ti}int_{Ti}(\lambda)$ and $\delta = int_{Ti}cl_{Ti}(\lambda)$. Then, by T heorem 2.4, η is a pairwise fuzzy regular closed set and δ is a pairwise fuzzy regular open set in (X,T_1,T_2) . Thus, there exists a pairwise fuzzy regular closed set η and a pairwise fuzzy regular open set δ in (X,T_1,T_2) such that $\eta \leq \delta$.

4. CONCLUSION

In this paper, the concept of pairwise fuzzy F' - Spaces is introduced and studied. Several characterizations of pairwise fuzzy F'-Spaces are established. Also finding the characterizations of pairwise fuzzy F'-Spaces in a pairwise fuzzy submaximal space, pairwise fuzzy globally disconnected spaces are obtained.

REFERENCES

- 1. Alegre.C, Ferrer.J and Gregori.V, On pairwise Baire bitopological spaces, Publ. Math. Debrecen, 55, 1999, 3–15.
- 2. Azad.K.K, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly Continuity, J. Math. Anal. Appl., 82,1981, 14–32.
- 3. Biljana Krsteska, Fuzzy pairwise almost strong precontinuity, Kragujevac. J.Math, 28(2005), 193 –206.
- 4. Chang.C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24, 1968, 182–190.
- 5. Dvalishvili.B.P, On various classes of bitopological spaces, Georgian Math. J., 19, 2012,449–472.
- 6. Kandil.A, Biproximities and fuzzy bitopological spaces, Simon Stevin, 63, 1989, 45-66.
- 7. Sampathkumar.K, On fuzzy pairwise α -continuityy and pairwise fuzzy pre-continuity, Fuzzy Sets and Systems, 62(1994), 231 –238.
- 8. Leonard Gillman and Melvin Henriksen, *Rings of continuous functions in whichevery finitely generated ideal is principal*, Trans. Amer. of Math. Soc., 82 (1956),366-391.
- 9. Thangaraj.G, On pairwise fuzzy resolvable and fuzzy irresolvable spaces, Bull. Cal. Math.Soc., 1 01, 2010, 59–68.
- 10. Thangaraj.G and Chandiran.V, On pairwise fuzzy Volterra spaces, Ann.Fuzzy Math. Inform, 7(6),2014, 1005–1012.
- 11. Thangaraj.G and Chandiran.V, *On pairwise fuzzy regular Volterra spaces*, J.Appl .Math. & Informatics.,33(5-6),2015,503-515.
- 12. Thangaraj, G and Sethuraman. S, On pairwise fuzzy Baire bitopological spaces, Gen. Math. Notes, 20(2), 2014, 12–21.
- 13. Thangaraj.G and Sethuraman.S., A note on pairwise fuzzy Baire bitopological spaces, Ann.Fuzzy Math. Inform, 8(5),2014, 729–737.
- 14. Thangaraj.G and Vinothkumar.A, On pairwise fuzzy σ-Baire spaces, Ann.Fuzzy Math. Inform,9(4), 2015, 529–536.
- 15. Thangaraj.G and Vinothkumar.A, A note on pairwise fuzzy σ -Baire spaces, Ann.Fuzzy Math. Inform, 11(5), 2016, 729-736.

- ISSN NO: 2249-3034
- 16. Thangaraj.G and Vinothkumar.A., A Short note on pairwise fuzzy σ-Baire spaces, IOSR Journal of Mathematics, 12(3), 2016, 27-30.
- 17. Thangaraj.G and Vinothkumar.A., *Pairwise fuzzy globally disconnected spaces and pairwise fuzzy* σ -*Baire spaces, Global Journal of Mathematical sciences, 9*(2), 2017, 117-125.
- 18. L. A. Zadeh, Fuzzy sets, Information and Control, 8, 1965, 338–353.