International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2249-3034

ADVANCED MALWARE ANALYSIS TOOL

Dr. Prasad! Prof. Chadra Mohan?

III B.Sc. DCFS Assistant Professor
Department of DCFS Department of DCFS
Nehru Arts and Science College Nehru Arts and Science College
Coimbatore, Tamil Nadu Coimbatore, Tamil Nadu

Dr.Juley Dr. Henry*

I B.Sc. DCFS IIB.Sc. DCFS
Department of DCFS Department of DCFS
Nehru Arts and Science College Nehru Arts and Science College
Coimbatore, Tamil Nadu Coimbatore, Tamil Nadu

Abstract - Malware analysis has become a crucial aspect of cybersecurity. Traditional static and dynamic
analysis tools lack integration and real-time assessment capabilities. This article presents an Advanced Malware
Analysis Tool (AMAT) that integrates hash-based identification, entropy analysis, pe header inspection, and
real-time threat intelligence from VirusTotal. Built with a user-friendly GUI using pyqt5, this tool automates
and streamlines the malware analysis process, offering a comprehensive security solution. This study discusses
the development, implementation, and comparative efficiency of AMAT against existing methods.

Key Words: Advanced Malware Analysis Tool (AMAT), Hash-Based Identification, Entropy Analysis, PE
Header Inspection, VirusTotal Integration.

1. Introduction

The rapid increase in cyber threats, driven by the evolution of increasingly sophisticated malware,
has highlighted the need for advanced analysis tools capable of overcoming the limitations of
traditional detection methods. Signature-based detection and heuristic analysis, while useful,
struggle to identify zero-day threats and polymorphic malware, which continuously adapt to avoid
detection. The Advanced Malware Analysis Tool (AMAT) was developed to address these
challenges by integrating a variety of techniques to offer a more comprehensive approach to
malware assessment. AMAT combines static analysis methods such as cryptographic hashing,
entropy measurement, and PE header analysis with real-time threat intelligence integration from
VirusTotal, enabling more accurate identification of known threats. In addition to static analysis,
AMAT enhances its capabilities with dynamic analysis via sandbox execution, allowing for the
real-time observation of malware behavior in a controlled environment. This enables the tool to
capture detailed insights into how malware interacts with the system, further improving detection
accuracy. A key motivation behind the development of AMAT is to streamline malware analysis
while maintaining high levels of precision and efficiency. Existing tools like Cuckoo Sandbox and
Pestudio often focus on either static or dynamic analysis, or require significant configuration and
technical expertise, making them less accessible for everyday use. AMAT, however, simplifies the
process with an intuitive, user-friendly interface that provides real-time updates, ensuring that both
security professionals and researchers can easily access its powerful features. This paper discusses
the methodology, system architecture, implementation, and evaluation of AMAT, comparing it with
existing tools, and showcasing its effectiveness in identifying and analyzing malicious files across
various environments. By offering a balanced, integrated approach to malware analysis, AMAT
serves as a valuable resource for improving cybersecurity efforts and combating increasingly
complex cyber threats.

2. Literature Review

Malware analysis has seen significant advancements in recent years, with a variety of tools and
frameworks developed to detect and mitigate cyber threats. Traditionally, static analysis methods

Volume XIV, Issue 111, MARCH/2025 Page No : 263

International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2249-3034

have relied on signature-based detection techniques, where tools like Pestudio and IDA Pro
examine binary structures, extract metadata, and identify suspicious patterns within files without
executing them. However, these methods are becoming increasingly ineffective against obfuscated
malware, which alters its signature to bypass detection mechanisms. Advanced obfuscation
techniques, such as polymorphism (where malware changes its code with each execution) and
metamorphism (which involves rewriting the code entirely), have made signature-based detection
less reliable. To address these challenges, dynamic analysis was developed, where malware is
executed in a controlled environment to monitor its behavior in real time. Tools like Cuckoo
Sandbox and FireEye simulate system interactions and track processes, helping analysts observe
malware’s actions on a system. However, dynamic analysis often requires significant computational
resources and manual configuration, making it difficult for everyday use. The rise of machine
learning and artificial intelligence in recent years has allowed for more advanced behavioral
analysis, where systems can detect new, previously unseen malware by recognizing patterns of
malicious activity rather than relying solely on known signatures. However, these Al-based
methods require vast datasets and significant training, which can make them impractical for rapid
assessments. AMAT (Advanced Malware Analysis Tool) seeks to address these limitations by
combining the best aspects of static analysis, dynamic analysis, and machine learning into a single,
powerful platform. By balancing the strengths of traditional methods with advanced machine
learning capabilities, AMAT offers a lightweight, faster, and more accurate approach to malware
analysis. This integrated platform allows security professionals to identify and assess malware more
efficiently, making AMAT an invaluable resource in the fight against cyber threats.

AMAT

A 4

3. Methodology

User Interface
(File Selection

A 4 l Y A 4 h 4

Hash Analysis PE Header Analysis Entropy Analysis VirusTotal Analysis Dynamic Analysis

v v h 4 v
Hash File PE Output Value Entropy Value VirusTotal Output Dynamic Analysis Output
| | | |

Generate Report

AMAT is designed with a modular architecture to provide a seamless and flexible solution for both
static and dynamic malware analysis. The system is built using Python with PyQt5 for the graphical
user interface (GUI), ensuring a responsive and user-friendly experience. For static analysis, AMAT
utilizes the hashlib library to compute cryptographic hashes, enabling the identification of files
through signature-based matching, while pefile is employed for in-depth analysis of Windows
Portable Executable (PE) files, extracting essential metadata for threat evaluation. The integration
with the VirusTotal API via the requests module enhances the tool’s ability to cross-reference files
against a global threat intelligence database, providing real-time updates on known malicious files.
AMAT also supports entropy analysis using Shannon’s entropy model, which helps detect
obfuscation techniques such as packing or encryption that malware may employ to evade detection.
On the dynamic analysis front, the tool leverages Linux sandbox environments, such as Firejail, to
securely execute suspicious files in isolation, preventing harm to the host system. The multi-

Volume XIV, Issue 111, MARCH/2025 Page No : 264

International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2249-3034

threaded architecture of AMAT ensures smooth performance even during resource-intensive tasks,
minimizing lag and enhancing the overall user experience. Each module within the tool logs its
results, allowing security professionals to review and analyze data for later forensic investigations.
The tool’s workflow is structured to first allow file selection, followed by static property extraction
and entropy calculation to identify potential obfuscation. Signature matching with VirusTotal
provides a quick check for known threats, and users can optionally execute the file in a controlled
dynamic analysis environment to observe its behavior in real-time. This combination of static and
dynamic analysis, along with the integration of threat intelligence and obfuscation detection, makes
AMAT a comprehensive and powerful tool for malware analysis and cybersecurity defense.

Module Description
AMAT project is divided into 6 modules
a. File Selection Module

The File Selection Module allows users to browse and upload executable files for analysis, ensuring
compatibility by validating formats such as Windows PE or Linux ELF. With an intuitive interface and drag-
and-drop functionality, it streamlines the process of selecting files, ensuring a smooth and efficient workflow
for malware analysis.

Welcome to the Advanced Malware Analysis Tool

Select Fie for Analysis
Ga ashes

b. Hash Generation Module

The Hash Generation Module computes cryptographic hash values (MD5, SHA-1, SHA-256) for executable
files, providing unique identifiers. These hashes help analysts detect duplicates, track malware variants, and
compare files with threat intelligence databases. Supporting batch processing, the module enhances
efficiency and accelerates malware identification, especially in large datasets.

c. PE Header Analysis Module

The PE Header Analysis Module extracts and interprets metadata from Portable Executable (PE) headers. It
helps identify potential threats by analyzing file dependencies, imported libraries, API calls, and timestamps.
This module is essential for detecting suspicious behaviors, obfuscation, or packing techniques often used by
malware, making it a vital tool for reverse engineering and threat analysis.

d. Entropy Analysis Module

The Entropy Analysis Module analyzes the randomness within a file's structure, helping to detect packing,
encryption, or obfuscation. High entropy values typically indicate files are compressed or encrypted
techniques commonly used by malware to evade detection. The module provides entropy scores and visual
representations to assist analysts in identifying polymorphic and metamorphic malware.

Volume XIV, Issue ITI, MARCH/2025 Page No : 265

International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2249-3034

e. VirusTotal Integration Module

The VirusTotal Integration Module connects the malware analysis tool to the VirusTotal API for real-time
threat intelligence lookups. By computing the file's SHA-256 hash, it checks the VirusTotal database for
previous analysis reports, detection ratios, and behavioral data. This integration helps speed up malware
identification and supports global cybersecurity initiatives, contributing to quicker detection of threats.

f. Dynamic Analysis Module

The Dynamic Analysis Module executes malware in a secure sandbox environment, tracking real-time
behaviors such as system interactions, file modifications, and network communications. This isolated
environment protects the host system while logging detailed data on malware’s behavior, persistence, and
evasive techniques, providing critical insights to aid in effective threat mitigation.

i. Sandboxing in Malware analysis

Sandboxing is vital for malware analysis, providing a safe environment to execute and study
suspicious software. It helps detect threats like unauthorized access and privilege escalation,
especially for zero-day and evasive malware. Advanced sandboxes use dynamic analysis and Al to
improve detection. However, sandbox-aware malware may alter its behavior to evade detection. To
combat this, analysts use multiple sandbox instances and hybrid analysis. Integrating sandboxing
with tools like IDS and EDR enhances overall threat response. Continuous advancements in
sandboxing are crucial for combating evolving malware threats.

4. Results

B Advasced Makwaee Anabss Tool = a >
Selected File: C: fUsers/VA/Downloads/nmap-7.95-setup.exe

Select Fie for Analyss
Generate Hashes
PE Heatler Anshyss
Entropy Analyss

Check on VinusTolal

Run Dynarmic Afahege (Linux Sandbor)

Dowmicad Report

ear

MDS5: bd457e3b19a7112 72233657 DeeBafc

SHA-1: 03W57bf436520afGh834 21T eadl 5865 54fle

SHA-256: c59b51d15b5965F27db4cSbbd 21 793ad6b4 92 c8C T 51836basbd 43829791 L1460

Entry Pont: (3640

Sectons: [*Iext 0000 00", ' rdatalx00'0g’, ' dataixeDieR0i 00’ " ndatapoddipedlr, *rsrcixdoix00\x00']
Imports: [ADVAPIZZ.dF, "SHELLS2,oF, '0ie32,dT, "COMCTLIZ Y, USERZ2.dT, 'GUII2.dF, 'KERNELIZ O]
Entrogry: 8.0000

No malware detected: 076 scanners flagged the fie as maltious.

To evaluate the efficiency of AMAT, the test was conducted using file selection comprising benign and
malicious executables from various sources. Performance metrics such as execution time, detection accuracy,
and resource consumption were recorded. Hash generation was completed within milliseconds, entropy
analysis averaged 2.1 seconds, and pe header parsing was near-instantaneous. Virustotal lookups depended
on network latency but generally returned results within 5-10 seconds. Dynamic analysis, limited to linux,
executed safely within a sandbox with an average runtime of 15 seconds. Comparisons with other tools like
pestudio and cuckoo sandbox demonstrated that AMAT provides a lightweight yet comprehensive malware
analysis approach, requiring fewer system resources while maintaining accuracy.

i. Threat intelligence integration

Threat intelligence integration is crucial for effective malware analysis and defense. The AMAT
leverages feeds from open-source platforms, commercial sources, and internal data to stay updated
on emerging threats. AMAT uses indicators of compromise (IOCs) like IP addresses and file hashes
to flag suspicious files. It also analyzes behavioral intelligence to detect sophisticated malware

Volume XIV, Issue ITI, MARCH/2025 Page No : 266

International Journal of Research in Science Advanced Technology and Management Studies ISSN NO : 2249-3034

using evasive techniques, such as encryption. Real-time updates and Al-powered analytics ensure
AMAT stays effective by predicting threats and supporting proactive defense strategies. Challenges
like data overload and feed credibility are addressed through intelligent filtering.

ii. Reverse Engineering and Code Obfuscation

Reverse engineering analyzes software to understand its functionality for security or malware
analysis. It involves decompiling code, which can be used for both legitimate and malicious
purposes. To protect against reverse engineering, code obfuscation techniques make the code harder
to analyze. While obfuscation raises difficulty, attackers may still use deobfuscation methods.
Additional measures like anti-debugging and runtime checks enhance security. Despite challenges,
reverse engineering is key for understanding threats and improving cybersecurity, with continuous
advancements in both obfuscation and detection methods.

Conclusion

The advanced malware analysis tool provides a comprehensive platform for analyzing suspicious files,
utilizing various techniques such as hash generation, entropy analysis, pe header inspection, and virustotal
integration. It streamlines malware detection by automating static and dynamic analysis processes,
improving efficiency and accuracy for cybersecurity professionals. The integration of sandboxing for linux
systems ensures that dynamic analysis can be performed in an isolated environment, reducing the risk of
system compromise. The tool's user-friendly interface, designed with pyqt5, enhances accessibility, allowing
users to navigate and execute security scans effortlessly. Additionally, the logging mechanism maintains a
record of analysis results, aiding in future investigations and forensic analysis. While the tool effectively
detects potential malware threats, it relies on virustotal for cloud-based scanning, which may have limitations
due to api constraints. The ability to generate detailed reports further strengthens its usability, enabling
security professionals to document findings for further assessment. Overall, this tool provides an essential
security layer for malware analysts, researchers, and it professionals seeking to identify and mitigate
potential threats efficiently.

Future Enhancement

The tool’s effectiveness can be improved by integrating several enhancements into future versions. First,
expanding support for Mac OS and Windows Sandboxing would allow for more comprehensive dynamic
analysis. Implementing machine learning-based malware classification can significantly improve detection
rates by identifying previously unknown malware variants. Adding Yara rule-based scanning will enhance
signature-based detection, enabling users to define custom rules for detecting malicious patterns. Real-time
monitoring of file system and registry changes during execution would provide deeper insights into malware
behavior. Enhancing the tool with an API-based modular framework would enable integration with external
cybersecurity platforms and automated threat intelligence feeds. Another key improvement is the
implementation of a heuristic-based detection mechanism, which can analyze code behavior instead of
relying solely on signatures. Lastly, introducing a real-time network traffic analyzer would help detect
potential command-and-control (C2) communications, making the tool more effective against modern
malware threats. By continuously evolving with emerging cybersecurity challenges, the tool can remain a
vital asset in malware analysis and threat detection.

References

1. Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press.

2. Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on Automated Dynamic Malware-
Analysis Techniques and Tools. ACM Computing Surveys, 44(2), 1-42.

3. Idika, N., & Mathur, A. P. (2007). A Survey of Malware Detection Techniques. Purdue University.

4. Kolter, J. Z., & Maloof, M. A. (2006). Learning to Detect Malicious Executables in the Wild. Journal of
Machine Learning Research, 7, 2721-2744.

5. VirusTotal. (2024). VirusTotal API Documentation. Retrieved from https://www.virustotal.com

6. Yen, T. F., Xie, Y., Yu, F., Yu, R., & Abadi, M. (2013). Host Fingerprinting and Tracking on the Web:
Privacy and Security Implications. IEEE Symposium on Security and Privacy.

Volume XIV, Issue 111, MARCH/2025 Page No : 267

http://www.virustotal.com/

	1.Introduction
	2.Literature Review
	3.Methodology
	Module Description
	4.Results
	Conclusion

