APPLICATIONS OF $wbg\alpha$ -CLOSED SETS AND $wb\alpha g$ -CLOSED SETS IN BINARY TOPOLOGICAL SPACE

Dr DINESH KUMAR

¹Department of Mathematics,
Madurai Kamaraj University,
Madurai District, Tamil Nadu, India.
e-mail: abimat@annejac.ac.in

^{2,3}Department of Mathematics,
Arul Anandar College, Karumathur,
Madurai District, Tamil Nadu, India.

e-mail: gilmat@gmail.com, prem.rpk27@gmail.com

ABSTRACT. In this paper, As an application of $wbg\alpha$ -closed sets and $wb\alpha g$ -closed sets, we will define eleven new spaces namely wbgaTbc-space, wbagTbc-space, wbagTbc-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space, wbagTba-space and study some of their properties.

1. Introduction

In 2011, S.Nithyanantha Jothi and P.Thangavelu [11] introduced topology between two sets and also studied some of their properties. For background material, papers [1] to [17] may be perused. In this paper, As an application of $wbg\alpha$ -closed sets

²⁰¹⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. wbg α -closed sets, wb α -closed sets, wb α -closed sets, wbga T_{bc} -space and wbag T_{bc} -space.

¹D. ABINAYA, ²M.GILBERT RANI AND ³R. PREMKUMAR

and $wb\alpha g$ -closed sets, we will define eleven new spaces namely $_{wbg\alpha}T_{bc}$ -space, $_{wb\alpha g}T_{bc}$ -space, $_{wb\alpha g}T_{b\alpha}$ -space and study some of their properties.

2. Applications of $wbg\alpha$ -Closed Sets and $wb\alpha g$ -Closed Sets

Definition 2.1. A binary topological space (X, Y, M) is said to be a

- (1) $_{\text{wbg}\alpha}T_{\text{bc}}$ -space if every wbg α -closed set in it is binary closed.
- (2) $_{\text{wbag}}T_{\text{bc}}$ -space if every wbag-closed set in it is binary closed.
- (3) $_{\text{wbg}\alpha}T_{\text{b}\alpha}$ -space if every wbg α -closed set in it is b α -closed.
- (4) $_{\text{wb}\alpha g}T_{\text{b}\alpha}$ -space if every wbag-closed set in it is ba-closed.
- (5) $_{\rm wbg\alpha}T_{\rm bg\alpha}$ -space if every wbg α -closed set in it is bg α -closed.
- (6) $_{wbg\alpha}T_{b\alpha g}$ -space if every wbg α -closed set in it is b αg -closed.
- (7) $_{wb\alpha g}T_{b\alpha g}$ -space if every wbag-closed set in it is bag-closed.
- (8) $_{\text{wbag}}T_{\text{bga}}$ -space if every wbag-closed set in it is bga-closed.
- (9) $_{\text{wbag}}T_{\text{wbg}\alpha}$ -space if every wbag-closed set in it is wbga-closed.
- (10) $_{\text{wbg}\alpha}T_{\text{bg}\star}$ -space if every wbg α -closed set in it is bg * -closed.
- (11) $_{\text{wbag}}T_{\text{bg}^*}$ -space if every wbag-closed set in it is bg *-closed.

Theorem 2.2. Every $w_{bg\alpha}T_{bc}$ -space is also a $w_{bg\alpha}T_{bg\alpha}$ -space.

Proof. Assume that (X, Y, M) is a $_{\rm wbg\alpha}T_{\rm bc}$ -space. Let (A, B) be a $wbg\alpha$ -closed set in (X, Y). Then (A, B) is binary closed, as (X, Y) is $_{\rm wbg\alpha}T_{\rm bc}$ -space. Since every binary closed set is $bg\alpha$ -closed, (A, B) is $bg\alpha$ -closed in (X, Y). Thus (X, Y, M) is a $_{\rm wbg\alpha}T_{\rm bg\alpha}$ -space.

The converse of the above Theorem need not be true as seen from the following example.

APPLICATIONS OF $wbg\alpha$ -CLOSED SETS AND $wb\alpha g$ -CLOSED SETS IN BINARY TOPOLOGICAL SPACE3

Example 2.3. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (\phi, \{2\}), (X, \{1\}), (X, Y)\}$. Then (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bg}\alpha}$ -space but not a $_{\text{wbg}\alpha}T_{\text{bc}}$ -space, since the subset $(\{b\}, \{2\})$ is wbg α -closed but not binary closed in (X, Y, M).

Theorem 2.4. Every $_{\text{wbqg}}T_{\text{bc}}$ -space is a $_{\text{wbg}\alpha}T_{\text{bg}\alpha}$ -space (resp. $_{\text{wbg}\alpha}T_{\text{bag}}$ -space).

Proof. Assume that (X, Y, M) is a $_{\rm wb\alpha g}T_{\rm bc}$ -space. Let (A, B) be a $wbg\alpha$ -closed set in (X, Y). Then (A, B) is $wb\alpha g$ -closed. By definition of $_{\rm wb\alpha g}T_{\rm bc}$ -space, (A, B) is binary closed. Since every binary closed set is $bg\alpha$ -closed (resp. $b\alpha g$ -closed), (A, B) is $bg\alpha$ -closed (resp. $b\alpha g$ -closed) in (X, Y). Thus (X, Y, M) is a $_{\rm wbg\alpha}T_{\rm bg\alpha}$ -space (resp. $_{\rm wbg\alpha}T_{\rm b\alpha g}$ -space).

The converse of the above Theorem need not be true as seen from the following example.

Example 2.5. In Example 2.3, then (X, Y, M) is both $_{\text{wbg}\alpha}T_{\text{bg}\alpha}$ -space and $_{\text{wbg}\alpha}T_{\text{b}\alpha g}$ -space but not a $_{\text{wb}\alpha g}T_{\text{bc}}$ -space, since the subset $(\{a\}, \{1\})$ is wb αg -closed but not binary closed in (X, Y, M).

Remark 2.6. (1) Every wbgaTbc-space is a wbgaTbag-space.

- (2) Every $_{\text{wbag}}T_{\text{bc}}$ -space is a $_{\text{wbag}}T_{\text{bga}}$ -space, $_{\text{wbag}}T_{\text{bag}}$ -space and $_{\text{wbag}}T_{\text{wbga}}$ -space.
- (3) Every $_{\text{wbag}}T_{\text{bga}}$ -space is a $_{\text{wbag}}T_{\text{wbga}}$ -space.

The converse of the above results need not be true as seen from the following examples.

Example 2.7. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (\{b\}, \{1\}), (X, \{1\}), (X, Y)\}$. Then (X, Y, M) is a $_{wbg\alpha}T_{b\alpha g}$ -space but not a $_{wbg\alpha}T_{bc}$ -space, since the subset $(\{a\}, \phi)$ is $wbg\alpha$ -closed but not binary closed in (X, Y, M).

¹D. ABINAYA, ²M.GILBERT RANI AND ³R. PREMKUMAR

Example 2.8. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (\{a\}, \{1\}), (\{b\}, \{2\}), (X, Y)\}$. Then (X, Y, M) is a $_{\text{wb}\alpha g}T_{\text{bg}\alpha}$ -space, $_{\text{wb}\alpha g}T_{\alpha g}$ -space and $_{\text{wb}\alpha g}T_{\text{wbg}\alpha}$ -space but not a $_{\text{wb}\alpha g}T_{\text{bc}}$ -space, since the subset $(\{a\}, \{2\})$ is wb αg -closed but not binary closed in (X, Y, M).

Example 2.9. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (X, \{1\}), (X, Y)\}$. Then (X, Y, M) is a $_{wb\alpha g}T_{wbg\alpha}$ -space but not a $_{wb\alpha g}T_{bg\alpha}$ -space, since the subset $(\{b\}, \{1\})$ is $wb\alpha g$ -closed but not $bg\alpha$ -closed in (X, Y, M).

Theorem 2.10. Every $wb\alpha g T_{bg\alpha}$ -space is also a $wbg\alpha T_{b\alpha g}$ -space.

Proof. Assume that (X, Y, M) is a $_{\rm wb\alpha g}T_{\rm bg\alpha}$ -space. Let (A, B) be a $wbg\alpha$ -closed set in (X, Y). Then (A, B) is $wb\alpha g$ -closed. By definition of $_{\rm wb\alpha g}T_{\rm bg\alpha}$ -space, (A, B) is $bg\alpha$ -closed. Since every $bg\alpha$ -closed set is $b\alpha g$ -closed, (A, B) is $b\alpha g$ -closed in (X, Y). Thus (X, Y, M) is a $_{\rm wbg\alpha}T_{\rm b\alpha g}$ -space.

The converse of the above Theorem need not be true as seen from the following example.

Example 2.11. In Example 2.7, then (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bag}}$ -space but not a $_{\text{wbag}}T_{\text{bg}\alpha}$ -space, since the subset $(\{a\}, Y)$ is wbag-closed but not bga-closed in (X, Y, M).

Theorem 2.12. If (X, Y, M) is a $_{\rm wbg\alpha}T_{\rm b\alpha}$ -space and an binary T_{α} -space, then it is $_{\rm wbg\alpha}T_{\rm bc}$ -space.

Proof. Let (*A*, *B*) be a $wbg\alpha$ -closed set in (*X*, *Y*, M). Since (*X*, *Y*, M) is a $wbg\alpha$ $Tb\alpha$ -space, (*A*, *B*) is binary $T\alpha$ -closed in (*X*, *Y*, M). Since (*X*, *Y*, M) is an binary $T\alpha$ -space, every $b\alpha$ -closed set is binary closed and hence (*A*, *B*) is binary closed in (*X*, *Y*, M). Hence (*X*, *Y*, M) is a $wbg\alpha$ Tbc-space.

APPLICATIONS OF $wbg\alpha$ -CLOSED SETS AND $wb\alpha g$ -CLOSED SETS IN BINARY TOPOLOGICAL SPACES

Theorem 2.13. If (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{b}\alpha}$ -space, then every wbg α -closed set is bg α -closed.

Proof. Follows from the fact that every $b\alpha$ -closed set is $bg\alpha$ -closed in (X, Y, M).

Theorem 2.14. Every $wbg\alpha T_{bc}$ -space (resp. $wb\alpha T_{bc}$ -space) is an binary T_{α} -space.

Proof. Assume that (*X*, *Y*, M) is a $_{wbg\alpha}T_{bc}$ -space (resp. $_{wb\alpha g}T_{bc}$ -space). Let (*G*, *H*) be $b\alpha$ -closed in (*X*, *Y*, M). Then (*G*, *H*) is $wbg\alpha$ -closed (resp. $wb\alpha g$ -closed), as every $b\alpha$ -closed set is $wbg\alpha$ -closed (resp. $wb\alpha g$ -closed). By definition of $_{wbg\alpha}T_{bc}$ -space (resp. $_{wb\alpha g}T_{bc}$ -space), (*G*, *H*) is binary closed. Hence (*X*, *Y*, M) is an binary T_{α} -space.

The converse of the above Theorem need not be true as seen from the following example.

Example 2.15. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (\{a\}, Y), (X, Y)\}$. Then (X, Y, M) is an binary T_{α} -space but not a $_{\text{wbg}\alpha}T_{\text{bc}}$ -space and $_{\text{wbag}}T_{\text{bc}}$ -space, since the subset $(\{a\}, \phi)$ is both wbg α -closed and wb α g-closed but not binary closed in (X, Y, M).

Theorem 2.16. Every $_{\text{wbag}}T_{\text{ba}}$ -space is a $_{\text{wbga}}T_{\text{bga}}$ -space.

Proof. Assume that (X, Y, M) is a $_{\text{wb}\alpha g}T_{\text{b}\alpha}$ -space. Let (A, B) be $wbg\alpha$ -closed in (X, Y). Then (A, B) is $wb\alpha g$ -closed. This implies (A, B) is $b\alpha$ -closed, as (X, Y, M) is $_{\text{wb}\alpha g}T_{\text{b}\alpha}$ -space. Since every $b\alpha$ -closed set is $bg\alpha$ -closed and hence (X, Y, M) is a $_{\text{wb}g\alpha}T_{\text{b}g\alpha}$ -space.

The converse of the above Theorem need not be true as seen from the following example.

Example 2.17. In Example 2.3, then (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bg}\alpha}$ -space but not a $_{\text{wb}\alpha g}T_{\text{b}\alpha}$ -space, since the subset $(\{b\}, \{1\})$ is wb αg -closed but not b α -closed in (X, Y, M).

¹D. ABINAYA, ²M.GILBERT RANI AND ³R. PREMKUMAR

Theorem 2.18. If (X, Y, M) is a $wbg\alpha Tb\alpha$ -space, then $wbg\alpha$ - $cl(E, F) = b\alpha$ -cl(E, F) for each subset (E, F) of (X, Y, M).

Proof. We know that, every $b\alpha$ -closed set is $wbg\alpha$ -closed in (X, Y, M). Since (X, Y, M) is a $wbg\alpha$ -space, every $wbg\alpha$ -closed set is $b\alpha$ -closed. Hence $WBG\alpha C(X, Y) = B\alpha C(X, Y)$. By definition of $wbg\alpha$ -closure and $b\alpha$ -closure, $wbg\alpha$ - $cl(E, F) = b\alpha$ -cl(E, F), for each subset (E, F) of (X, Y, M).

Theorem 2.19. If (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bc}}$ -space, then for each $(x, y) \in (X, Y)$ either $\{(x, y)\}$ is $b\alpha$ -closed or open.

Proof. Let $(x, y) \in (X, Y)$ and suppose $\{(x, y)\}$ is not $b\alpha$ -closed in (X, Y, M). Then $(X, Y) - \{(x, y)\}$ is not $b\alpha$ -open. Hence (X, Y) is the only $b\alpha$ -open set containing $(X, Y) - \{(x, y)\}$ which implies $b\alpha$ - $cl((X, Y) - \{(x, y)\}) \subseteq (X, Y)$. Hence $(X, Y) \supseteq b\alpha$ - $cl((X, Y) - \{(x, y)\}) \supseteq b\alpha$ - $cl((X, Y) - \{(x, y)\})$. Thus $(X, Y) - \{(x, y)\}$ is wbgα-closed set of (X, Y, M). Since (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bc}}$ -space, $(X, Y) - \{(x, y)\}$ is binary closed. Thus $\{(x, y)\}$ is binary open in (X, Y, M).

3. Applications of $bq^*\alpha$ -Closed Sets

By applying $bg *\alpha$ -closed sets we will define seven new spaces namely $_{b\alpha g}T_{bg^*\alpha}$ -space, $_{g^*\alpha}T_{bc}$ -space, $_{bg^*\alpha}T_{bg^*\alpha}$ -space, $_{bg\alpha}T_{bg^*\alpha}$ -space, $_{wb\alpha g}T_{bg^*\alpha}$ -space, $_{wbg\alpha}T_{bg^*\alpha}$ -space, $_{bg^*\alpha}T_{bg^*}$ -space and study some of their properties.

Definition 3.1. A space (X, Y, M) is said to be a

- (1) $_{bg^{\star}\alpha}T_{bc}$ -space if every $bg^{\star}\alpha$ -closed set in it is binary closed.
- (2) $bg^*\alpha Tb\alpha$ -space if every $bg^*\alpha$ -closed set in it is $b\alpha$ -closed.
- (3) $_{bg\alpha}T_{bg^*\alpha}$ -space if every $bg\alpha$ -closed set in it is $bg^*\alpha$ -closed.
- (4) $_{\text{bag}}T_{\text{bg*}\alpha}$ -space if every bag-closed set in it is bg* α -closed.

APPLICATIONS OF $wbg\alpha$ -CLOSED SETS AND $wb\alpha g$ -CLOSED SETS IN BINARY TOPOLOGICAL SPACE7

- (5) $_{\text{wbag}}T_{\text{bg}^{\star}\alpha}$ -space if every wbag-closed set in it is bg $^{\star}\alpha$ -closed.
- (6) $_{\text{wbg}\alpha}T_{\text{bg}^*\alpha}$ -space if every wbg α -closed set in it is bg $^*\alpha$ -closed.
- (7) $_{bg^{\star}\alpha}T_{bg^{\star}}$ -space if every $bg^{\star}\alpha$ -closed set in it is bg^{\star} -closed.

Theorem 3.2. Every $_{\text{wbg}\alpha}T_{\text{bc}}$ -space is also a $_{\text{bg}^{\star}\alpha}T_{\text{b}\alpha}$ -space.

Proof. Assume that (X, Y, M) is a $_{\text{wbg}\alpha}T_{\text{bc}}$ -space. Let (E, F) be a $bg^*\alpha$ -closed set in (X, Y). Then (E, F) is $wbg\alpha$ -closed. By the definition of $_{\text{wbg}\alpha}T_{\text{bc}}$ -space, (E, F) is binary closed. Since every binary closed set is $b\alpha$ -closed, (E, F) is $b\alpha$ -closed in (X, Y, M). Thus (X, Y, M) is a $_{\text{bg}^*\alpha}T_{\text{b}\alpha}$ -space.

The converse of the above Theorem need not be true as seen from the following example.

Example 3.3. In Example 2.8, then (X, Y, M) is a $\log_{\alpha} T_{b\alpha}$ -space but not a $\log_{\alpha} T_{b\alpha}$ -space, since the subset $(\{b\}, Y)$ is wbg α -closed but not binary closed in (X, Y, M).

Theorem 3.4. Every binary $b\alpha g T_{bg^*\alpha}$ -space is a $bg\alpha T_{bg^*\alpha}$ -space.

Proof. Let (X, Y, M) be a $_{b\alpha g}T_{bg^*\alpha}$ -space and let (E, F) be a $bg\alpha$ -closed set in (X, Y). Then (E, F) is $b\alpha g$ -closed. Since (X, Y, M) is a $_{b\alpha g}T_{bg^*\alpha}$ -space, (E, F) is $bg^*\alpha$ -closed. Hence (X, Y, M) is a $_{bg\alpha}T_{bg^*\alpha}$ -space.

The converse of the above Theorem need not be true as seen from the following example.

Example 3.5. Let $X = \{a, b\}$, $Y = \{1, 2\}$ and $M = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (X, Y)\}$. Then (X, Y, M) is a $_{bg\alpha}T_{bg^*\alpha}$ -space but not a $_{b\alpha g}T_{bg^*\alpha}$ -space, since the subset $(\{b\}, \{1\})$ is bag-closed but not $bg^*\alpha$ -closed in (X, Y, M).

Theorem 3.6. If (X, Y, M) is a $bg^*\alpha Tb\alpha$ -space and an binary T_α -space, then it is $bg^*\alpha Tbc$ -space.

8

¹D. ABINAYA, ²M.GILBERT RANI AND ³R. PREMKUMAR

Proof. Let (E, F) be a bg^* α -closed set in (X, Y, M). Since (X, Y, M) is a $bg^*\alpha Tb\alpha$ -space, (E, F) is $b\alpha$ -closed in (X, Y, M). Since (X, Y, M) is an binary T_α -space, every $b\alpha$ -closed set is binary closed and hence (E, F) is binary closed in (X, Y, M). Hence (X, Y, M) is a $bg^*\alpha Tbc$ -space.

Theorem 3.7. If (X, Y, M) is a binary T_{α} -space and a $_{\text{bg}^{\star}\alpha}T_{\text{b}\alpha}$ -space, then it is a $_{\text{bg}^{\star}\alpha}T_{\text{bg}^{\star}}$ -space.

Proof. Let (E, F) be a bg^* α -closed set in (X, Y, M). Since (X, Y, M) is a $bg^*\alpha T_{b\alpha}$ -space, (E, F) is $b\alpha$ -closed in (X, Y, M). Since (X, Y, M) is a $b\alpha$ -space, every $b\alpha$ -closed set is binary closed and hence (E, F) is binary closed in (X, Y, M). Since every binary closed set is bg^* -closed, (E, F) is bg^* -closed in (X, Y, M). Hence (X, Y, M) is a $bg^*\alpha T_{bg^*}$ -space.

Theorem 3.8. If (X, Y, M) is a binary $T_{1/2}$ *space and a $bg^*\alpha T_{bg^*}$ -space, then it is a $bg^*\alpha T_{b\alpha}$ -space.

Proof. Let (E, F) be a $bg^*\alpha$ -closed set in (X, Y, M). Since (X, Y, M) is a $bg^*\alpha T_{bg^*}$ -space, (E, F) is bg^* -closed in (X, Y, M). Since (X, Y, M) is a binary $T_{1/2}^*$ -space, (E, F) is binary closed in (X, Y, M). Since every binary closed set is $b\alpha$ -closed, (E, F) is $b\alpha$ -closed in (X, Y, M). Hence (X, Y, M) is a $bg^*\alpha T_{b\alpha}$ -space.

Theorem 3.9. If (X, Y, M) is a $bg^*\alpha Tbc$ -space, then for each $(x, y) \in (X, Y)$ either $\{(x, y)\}$ is $b\alpha$ -closed or open.

Proof. Let $(x, y) \in (X, Y)$ and suppose $\{(x, y)\}$ is not $b\alpha$ -closed in (X, Y). Then $(X, Y) - \{(x, y)\}$ is not $b\alpha$ -open. Hence (X, Y) is the only $b\alpha$ -open set containing $(X, Y) - \{(x, y)\}$ which implies $b\alpha$ - $cl((X, Y) - \{(x, y)\}) \subseteq (X, Y)$. Hence $(X, Y) - \{(x, y)\}$ is a $bg^*\alpha$ -closed in (X, Y, M). Since (X, Y, M) is a $g^*\alpha$ -space, $(X, Y) - \{(x, y)\}$ is binary closed. Thus $\{(x, y)\}$ is binary open in (X, Y, M).

APPLICATIONS OF $wbg\alpha$ -CLOSED SETS AND $wb\alpha g$ -CLOSED SETS IN BINARY TOPOLOGICAL SPACE9

Theorem 3.10. If (X, Y, M) is a $bg^*\alpha T_{bc}$ -space, then for every subset (E, F) of (X, Y), $bg^*\alpha$ -cl(E, F) is $bg^*\alpha$ -closed in (X, Y, M).

Proof. By definition, $bg^*\alpha\text{-}cl(E,F) = \bigcap \{(G,H) \subseteq (X,Y) : (E,F) \subseteq (G,H) \text{ and } (G,H) \text{ is } bg^*\alpha\text{-}closed \text{ in } (X,Y,M)\}$. Since (X,Y,M) is a $bg^*\alpha T_{bc}$ -space, $bg^*\alpha\text{-}cl(E,F)$ is binary closed in (X,Y,M). Since every binary closed set is $bg^*\alpha\text{-}closed$, $bg^*\alpha\text{-}cl(E,F)$ is $bg^*\alpha\text{-}closed$ in (X,Y,M).

REFERENCES

- [1] D. Abinaya and M. Gilbert Rani, Bianry α -generalized closed sets in binary topological spaces, Indian Journal of Natural Sciences, 14(77)(2023), 54089-54094.
- [2] Carlos Granados, On binary α -open sets and binary α - ω -open sets in binary topological spaces, South Asian Journal of Mathematics, 11(1)(2021), 1-11.
- [3] M. Gilber Rani and R. Premkumar, Properties of binary θ -closed sets in binary topological spaces, Journal of Education: Rabindra Bharati University, XXIV(1)(XII)(2022), 164-168.
- [4] A. Gnana Arockiam, M. Gilber Rani and R. Premkumar, Binary Generalized Star Semi Closed Set in Binary Topological Spaces, Eur. Chem. Bull. 2023, 12 (S2), 2447 2553.
- [5] S.Jayalakshmi and A.Manonmani, Binary regular beta closed sets and Binary regular beta open sets in Binary topological spaces, The International Journal of Analytical and Experimental Modal Analysis, Vol 12(4)(2020), 494-497.
- [6] S.Jayalakshmi and A.Manonmani, Binary Pre Generalized Regular Beta Closed Sets in Binary Topological spaces, International Journal of Mathematics Trends and Technology, 66(7)(2020), 18-23.
- [7] N. Levine, Generalized Closed Sets in Topology, Rent. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [8] H. Maki, R. Devi, and K. Balachandran, Generalized α -Closed Sets in Topology, Bull. Fukuoka Univ, Ed., Part (III)(42)(1993), 13-21.
- [9] H. Maki, R. Devi, and K. Balachandran, Associate Topologies of Generalized α -Closed Sets and α -Generalized Closed Sets, Mem. Fac. Kochi Univ. Ser. A. Math., (15)(1994), 51-63.

10 1D. ABINAYA, 2M.GILBERT RANI AND 3R. PREMKUMAR

- [10] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α -Open Mappings, Acta. Math. Hungar., (41)(1983), 213-218.
- [11] S. Nithyanantha Jothi and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3)(2011), 95-107.
- [12] S. Nithyanantha Jothi and P. Thangavelu, Generalized binary closed sets in binary topological spaces, Ultra Scientist Vol.26(1)(A)(2014), 25-30.
- [13] S. Nithyanantha Jothi and P. Thangavelu, Binary- $T_{1/2}$ -space, Acta Ciencia Indica, XLIM(3)(2015), 241-247.
- [14] S. Nithyanantha Jothi and P. Thangavelu, Generalized binary regular closed sets, IRA-International Journal of Applied Sciences, 4(2)(2016), 259-263.
- [15] S. Nithyanantha Jothi, Binary Semi open sets in Binary topological Spaces, International journal of Mathematical Archieve, 7(9)(2016), 73-76.
- [16] O. Njastad, On Some Classes of Nearly open Sets, Pacific. J. Math., (15)(1965), 961-970.
- [17] C.Santhini and T. Dhivya, New notion of generalised binary closed sets in binary topological space, International Journal of Mathematical Archive-9(10), 2018.